[1]段爱民 陈泽琳 陈海波.基于改进蚁群算法的物流配送路径优化[J].计算机技术与发展,2011,(12):178-181.
 DUAN Ai-min,CHEN Ze-lin,CHEN Hai-bo.Path Optimization for Logistics Distribution Based on Improved Ant Colony Algorithm[J].,2011,(12):178-181.
点击复制

基于改进蚁群算法的物流配送路径优化()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年12期
页码:
178-181
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Path Optimization for Logistics Distribution Based on Improved Ant Colony Algorithm
文章编号:
1673-629X(2011)12-0178-04
作者:
段爱民 陈泽琳 陈海波
华南理工大学计算机科学与工程学院
Author(s):
DUAN Ai-min CHEN Ze-lin CHEN Hai-bo
College of Computer Science and Engineering, South China University of Technology
关键词:
蚁群算法蚁群系统物流配送路径优化
Keywords:
ant colony algorithm ant colony system logistics distribution path optimization
分类号:
TP392
文献标志码:
A
摘要:
随者社会的不断进步,配送车辆最短路径优化问题已广泛应用于交通运输、网络购物、物流配送等与生产生活息息相关的问题,然而配送车辆路径优化的计算比较复杂。文中建立在带约束条件的多车辆物流配送问题模型的基础上,运用改进的蚁群算法解决物流配送过程中的路径选择问题。通过对信息素的全局和局部更新规则进行改进,和传统的最值蚁群算法进行比较,算法的收敛速度和全局搜索能力得到提高。文中最后成功将改进后的蚁群算法应用于多车辆物流调度路径优化问题。结果表明该优化算法性能更优
Abstract:
The computation of the vehicle path optimization for logistics distribution is compficated. Based on the multiple vehicles' logistics distribution model with constraints,it takes advantage of improved ant colony algorithm to solve the problem of selecting the path in the process of logistics distribution. By improving the global and local updating rules for pheromone, the convergence rate and global search capability is increased, compared with the traditional ant colony algorithm. Finally, the improved ant colony algorithm is successfully applied on path optimization of scheduling multiple vehicles in the logistics distribution

相似文献/References:

[1]段军,张清磊.蚁群算法在LEACH路由协议中的应用[J].计算机技术与发展,2014,24(01):65.
 DUAN Jun,ZHANG Qing-lei.Application of Ant Colony Algorithm Based on LEACH Routing Protocol[J].,2014,24(12):65.
[2]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(12):128.
[3]熊伟平 曾碧卿.几种仿生优化算法的比较研究[J].计算机技术与发展,2010,(03):9.
 XIONG Wei-ping,ZENG Bi-qing.Studies on Some Bionic Optimization Algorithms[J].,2010,(12):9.
[4]宋世杰 刘高峰 周忠友 卢小亮.基于改进蚁群算法求解最短路径和TSP问题[J].计算机技术与发展,2010,(04):144.
 SONG Shi-jie,LIU Gao-feng,ZHOU Zhong-you,et al.An Improved Ant Colony Algorithm Solving the Shortest Path and TSP Problem[J].,2010,(12):144.
[5]林本强 唐依珠.基于蚁群算法的移动自适应网QoS路由算法[J].计算机技术与发展,2009,(06):9.
 LIN Ben-qiang,TANG Yi-zhu.Ant Colony Algorithm Based Ad Hoc Network QoS Routing Algorithm[J].,2009,(12):9.
[6]古明家 宣士斌 廉侃超 李永胜.基于蚁群和人工鱼群算法融合的QoS路由算法[J].计算机技术与发展,2009,(07):145.
 GU Ming-jia,XUAN Shi-bin,LIAN Kan-chao,et al.QoS Routing Algorithm Based on Combination of Modified Ant Colony Algorithm and Artificial Fish Swarm Algorithm[J].,2009,(12):145.
[7]贾瑞玉 张新建 冯伦阔 李永顺.信息素增量动态更新的改进蚁群算法[J].计算机技术与发展,2009,(09):32.
 JIA Rui-yu,ZHANG Xin-jian,FENG Lun-kuo,et al.Ant Colony Algorithm with Dynamic Pheromones Increment Updating[J].,2009,(12):32.
[8]鲍娜 张德贤 孙傲冰 王飞.基于改进蚁群算法的网格组合拍卖资源分配[J].计算机技术与发展,2009,(10):149.
 BAO Na,ZHANG De-xian,SUN Ao-bing,et al.Research on Resource Allocation of Combinatorial Auction in Grid Based on Improved Ant Colony Algorithm[J].,2009,(12):149.
[9]邓义乔 张代远.蚁群算法在搜索引擎系统中的应用研究[J].计算机技术与发展,2009,(12):21.
 DENG Yi-qiao,ZHANG Dai-yuan.Research and Application of Ant Colony Algorithm in Searching Engine System[J].,2009,(12):21.
[10]段凤玲 李龙澍 曹文婷.具有多态特征和聚类处理的蚁群算法[J].计算机技术与发展,2009,(12):77.
 DUAN Feng-ling,LI Long-shu,CAO Wen-ting.Ant Colony Algorithm with Polymorphism and Clustering Processing[J].,2009,(12):77.

备注/Memo

备注/Memo:
段爱民(1982-),男,硕士研究生,研究方向为人工智能陈泽琳,副教授,硕士生导师,研究方向为人工智能
更新日期/Last Update: 1900-01-01