[1]宫正 刘晓燕.时间序列短期趋势信号模型研究[J].计算机技术与发展,2011,(12):105-108.
 GONG Zheng,LIU Xiao-yan.Study on Time Series of Short-Term Trend Signal Model[J].,2011,(12):105-108.
点击复制

时间序列短期趋势信号模型研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年12期
页码:
105-108
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Study on Time Series of Short-Term Trend Signal Model
文章编号:
1673-629X(2011)12-0105-04
作者:
宫正 刘晓燕
昆明理工大学信息工程与自动化学院
Author(s):
GONG Zheng LIU Xiao-yan
Faculty of Information Engineering and Automation, Kunming University of Science and Technology
关键词:
时间序列短期趋势信号最小二乘法趋势模型
Keywords:
time series short term signals least square method model of trend
分类号:
TP31
文献标志码:
A
摘要:
时间序列是按固定的时间间隔对数据采样,按照时间顺序依次排列的一组被观测数据或信息。随着我国金融证券市场的不断发展和日渐完善,金融时间序列的研究对金融投资者具有越来越重要的意义,受到越来越多的研究者和投资者的关注。文中的研究目的是通过金融时间序列的短期的趋势信号估计金融时间序列的短期趋势,提出短期趋势为信号的模型,用最小二乘法对所估计出的短期趋势建立趋势模型,并做了短期趋势信号的模型的实证研究。通过对上证A股的时间序列进行实证分析,实验表明所建立的模型是有效的,能够为投资者提供参考
Abstract:
Time series is based on a fixed time interval of data sampling. Time series is arranged in chronological order a set of data or information which has been observed. With the development of financial market in our country, financial time series are becoming mote im- portant for financial investors. More and mote scholars and investors pay attention to the study of time series. It is on the trend of financial time series. Detect the short term signals and predict the short term trend. Detect the rising trend'and falling trend in financial time series. Classify the trend in time series as strict trend, flexible trend and interval trend. Also define the strength of trend. Use actual value of time ,series to construct a model to modify the forecast value of the financial time series. Predict the trend rightly. So it is useful to investors

相似文献/References:

[1]赵伟 梁循.互联网金融信息量与收益率波动关联研究[J].计算机技术与发展,2009,(12):1.
 ZHAO Wei,LIANG Xun.Research on Relationship Between Internet Financial Information and Fluctuation of Price - Earnings[J].,2009,(12):1.
[2]张虹 赵兵 钟华.基于小波多尺度的网络论坛话题热度趋势预测[J].计算机技术与发展,2009,(04):76.
 ZHANG Hong,ZHAO Bing,ZHONG Hua.Hot Trend Prediction of Network Forum Topic Based on Wavelet Multi - Resolution Analysis[J].,2009,(12):76.
[3]常毅 王加阳.时态信息系统转换方法研究[J].计算机技术与发展,2008,(07):15.
 CHANG Yi,WANG Jia-yang.Research on Method of Translating TIS to IS[J].,2008,(12):15.
[4]施尧 赵勇 杨雪洁 赵妹 张燕平 关有训 王克强.基于覆盖算法的大气质量预测[J].计算机技术与发展,2008,(07):190.
 SHI Yao,ZHAO Yong,YANG Xue-jie,et al.Application of Covering Algorithm to Prediction of Air Quality[J].,2008,(12):190.
[5]何星星 孙德山.模糊神经网络与SARIMA结合的时间序列预测模型[J].计算机技术与发展,2008,(08):61.
 HE Xing-xing,SUN De-shan.A Time Series Forecasting Model Using a Hybrid Fuzzy Neural Network and SARIMA[J].,2008,(12):61.
[6]兰妥 江弋 刘光生.基于Sas的时间序列缺失值处理方法比较[J].计算机技术与发展,2008,(10):43.
 LAN Tuo,JIANG Yi,LIU Guang-sheng.Comparison of Methods on Time Series' Missing Value Based on Sas[J].,2008,(12):43.
[7]查春生 倪志伟 倪丽萍 公维峰.基于相空间重构的股价时间序列相关性分析[J].计算机技术与发展,2010,(08):17.
 ZHA Chun-sheng,NI Zhi-wei,NI Li-ping,et al.Correlations Analysis Between Stock Index Time Serials Based on Reconstructed Phase Space[J].,2010,(12):17.
[8]贾瑞玉 王亮 王会颖.二维CVVT方法在时间序列分析中的应用研究[J].计算机技术与发展,2007,(05):160.
 JIA Rui-yu,WANG Liang,WANG Hui-ying.Research for Applications of 2D - CWT Approach in Time Series Analysis[J].,2007,(12):160.
[9]张诚 郑诚.基于时间的模糊关联规则挖掘[J].计算机技术与发展,2007,(07):60.
 ZHANG Cheng,ZHENG Cheng.Fuzzy Association Rules Mining over Time[J].,2007,(12):60.
[10]胡蓉.多输出支持向量回归及其在股指预测中的应用[J].计算机技术与发展,2007,(10):226.
 HE Rong.Application of Multi - Output Support Vector Regression in Stock Market Index Forecasting[J].,2007,(12):226.

备注/Memo

备注/Memo:
云南省教育科学研究基金项目(07C10799)宫正(1984-),男,山东烟台人,硕士研究生,研究方向为数据挖掘、信号处理;刘晓燕,副教授,硕士生导师,研究方向为模式识别、实时系统
更新日期/Last Update: 1900-01-01