[1]潘晓东[] 王春江 黄镇鸿 张国辉[].作战重心建模中的条件概率生成方法研究[J].计算机技术与发展,2011,(04):56-59.
 PAN Xiao-dong,WANG Chun-jiang,HUANG Zhen-hong,et al.Research on Method of Generating Conditional Probabilities in COG Modeling[J].,2011,(04):56-59.
点击复制

作战重心建模中的条件概率生成方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年04期
页码:
56-59
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research on Method of Generating Conditional Probabilities in COG Modeling
文章编号:
1673-629X(2011)04-0056-04
作者:
潘晓东[13] 王春江2 黄镇鸿1 张国辉[3]
[1]解放军理工大学指挥自动化学院[2]中国电子设备系统工程研究所[3]96669部队
Author(s):
PAN Xiao-dongWANG Chun-jiangHUANG Zhen-hongZHANG Guo-hui
[1]Institute of Command Automation,PLA University of Science & Technology[2]Academy of Electronic System Engineering of China[3]96669 unit of PLA
关键词:
COG贝叶斯网络启发式条件概率
Keywords:
centers of gravity Bayesian networks heuristic conditional probability
分类号:
TP391.9
文献标志码:
A
摘要:
运用贝叶斯网络技术对作战重心(Center of Gravity,COG)建模时,子节点条件概率表中的概率分布数量随着父节点数目的增加呈指数增长,这对担负概率估算的领域专家而言是一个巨大的挑战。分析了领域专家在估算条件概率时的启发式思维,提出一致性父节点配置的概念,并把在该配置下估算获得的条件概率和父节点的相对权重作为输入,使用加权和的方法生成其余的条件概率。该方法减少了领域专家在估算条件概率时的认知量,有利于保持概率分布的一致性
Abstract:
The number of probability distributions required in the conditional probability table(CPT) of a child-node grows exponentially with the number of its parent-nodes in the process of COG modeling with Bayesian networks technology,which is a big challenge for domain expert who is assigned to estimate these probabilities.The heuristic thought of domain expert in conditional probability estimation is analyzed,and the concept of compatible parental configurations is presented in this paper.The rest conditional probabilities in the CPT are generated by the method of weighted sum algorithm with the input of conditional probabilities estimated in the compatible parental configuration and relative weights of parent-nodes.The extent of knowledge acquisition is reduced radically when estimating conditional probabilities using this method as well as making for keeping compatibility of probability distributions

相似文献/References:

[1]宫义山 高媛媛.基于信息融合的诊断贝叶斯网络研究[J].计算机技术与发展,2009,(06):106.
 GONG Yi-shan,GAO Yuan-yuan.Diagnostic Bayesian Networks Research Based on Information Fusion[J].,2009,(04):106.
[2]奚海荣 马文丽 梁斌.基于贝叶斯网络SP算法的改进研究[J].计算机技术与发展,2009,(03):155.
 XI Hai-rong,MA Wen-li,LIANG Bin.Improvement of SP Algorithm Based on Bayesian Networks[J].,2009,(04):155.
[3]应宏 黄河 鄢沛.Java CoG Kits在GridFTP开发中的应用[J].计算机技术与发展,2008,(11):211.
 YING Hong,HUANG He,YAN Pei.Application of Java CoG Kits in GridFTP Development[J].,2008,(04):211.
[4]王峻 周孟然.一种基于MDL度量的选择性扩展贝叶斯分类器[J].计算机技术与发展,2007,(07):35.
 WANG Jun,ZHOU Meng-ran.A Selective Augmented Naive Bayesian Classifier Based on MDL Score[J].,2007,(04):35.
[5]程泽凯.基于TAN结构的启发式贝叶斯网络结构学习算法[J].计算机技术与发展,2007,(08):61.
 CHENG Ze-kai.BN Structure Learning Heuristic Algorithm Based on TAN Structure[J].,2007,(04):61.
[6]蒋望东 林士敏 鲁明羽[].基于BIC测度和混合遗传算法的BNC结构学习[J].计算机技术与发展,2007,(03):84.
 JIANG Wang-dong,LIN Shi-min,LU Ming-yu.Structure Learning of BNC Based on BIC and Hybrid Genetic Algorithms[J].,2007,(04):84.
[7]孙笑微 赵大宇 李晓毅 唐恒永.用于数据挖掘的TAN分类器的研究与应用[J].计算机技术与发展,2006,(11):140.
 suN Xiao-wei,ZHAO Da-yu,LI Xiao-yi,et al.Study and Application of TAN Classifier for Data Mining[J].,2006,(04):140.
[8]钟仕群 朱程荣 熊齐邦.一种基于贝叶斯网络的集成的故障定位模型[J].计算机技术与发展,2006,(12):13.
 ZHONG Shi-qun,ZHU Cheng-rong,XIONG Qi-bang.An Integrated Fault Localization Model Based on Bayesian Networks[J].,2006,(04):13.
[9]洪海燕.基于贝叶斯分类器的简历筛选模型[J].计算机技术与发展,2012,(07):85.
 HONG Hai-yan.Screening of Resumes Based on Bayesian Classifier[J].,2012,(04):85.
[10]吴绍兵.基于贝叶斯网络的信息提取技术研究[J].计算机技术与发展,2012,(11):225.
 WU Shao-bing.Research of Information Extraction Technique Based on Bayesian Network[J].,2012,(04):225.

备注/Memo

备注/Memo:
总装预研基金项目(9140A08020206JB8102)潘晓东(1981-),男,江苏滨海人,硕士研究生,研究方向是作战信息管理、系统工程;王春江,博士,高级工程师,硕士生导师.研究领域为系统工程、建模与仿真等
更新日期/Last Update: 1900-01-01