[1]毛明明 柳益君 汤嘉立.基于L—M神经网络的齿轮故障诊断[J].计算机技术与发展,2011,(01):210-213.
 MAO Ming-ming,LIU Yi-jun,TANG Jia-li.Gear Fault Diagnosis Based on Levenberg-Marquardt Neural Network[J].,2011,(01):210-213.
点击复制

基于L—M神经网络的齿轮故障诊断()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年01期
页码:
210-213
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Gear Fault Diagnosis Based on Levenberg-Marquardt Neural Network
文章编号:
1673-629X(2011)01-0210-04
作者:
毛明明1 柳益君2 汤嘉立2
[1]华为技术有限公司业务与软件产品线[2]江苏技术师范学院计算机工程学院
Author(s):
MAO Ming-ming LIU Yi-jun TANG Jia-li
[1]Business and Software Product Line, Huawei Technologies Co. , Ltd[2]College of Computer Engineering, Jiangsu Teachers University of Technology
关键词:
神经网络麦夸特算法齿轮故障诊断
Keywords:
neural network Levenberg-Marquardt algorithm gear fault diagnosis
分类号:
TP183
文献标志码:
A
摘要:
齿轮传动工况的复杂性使得其特征参量与故障形式呈非线性映射关系。提出基于Levenberg-Marquardt算法的前向多层神经网络的齿轮故障诊断方法,该方法通过利用二阶导数信息,可以提高收敛速度和增强网络的泛化性能。并以一种齿轮箱故障信号采集实验系统为例,通过MATLAB软件及其神经网络工具建模和仿真研究。结果表明,Levenberg—Marquardt神经网络对齿轮常见故障有良好的识别能力,能稳定、准确地识别各类故障,与标准BP网络相比,收敛速度快且诊断更为准确
Abstract:
Because of the complexity of gear working condition, there are non-linear relationship between characteristic parameters and fault types. Proposes to apply the feed forward artificial neural network with Levenberg-Marquardt training algorithm, to the problem of gear fault diagnosis. By using second derivative information,the network convergence speed is promoted and the generalization performance is enhanced. Taking a certain gearbox fault signal acquisition experimental system for an example, MATLAB software and its neural network toolbox are used to model and simulate. The experiment result shows that Levenberg-Marquardt neural network has good performance for the common gear fault diagnosis and it can identify various types of faults stably and accurately. Furthermore ,compared with conventional BP neural network, the Levenberg-Marquardt neural network reduces training epochs and promotes prediction accuracy

相似文献/References:

[1]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(01):84.
[2]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(01):148.
[3]包力伟 周俊.铸锻企业生产质量控制系统的开发[J].计算机技术与发展,2008,(04):174.
 BAO Li-wei,ZHOU Jun.Development of a Manufacture Quality Control System in Casting Company[J].,2008,(01):174.
[4]李志俊 程家兴 金奎 饶玉佳.基于样本期望训练数的BP神经网络改进研究[J].计算机技术与发展,2009,(05):103.
 LI Zhi-jun,CHENG Jia-xing,JIN Kui,et al.BP Algorithm Improvement Based on Sample Expected Training Number[J].,2009,(01):103.
[5]李龙澍 葛瑞峰 王慧萍.基于神经网络的批强化学习在Robocup中的应用[J].计算机技术与发展,2009,(07):98.
 LI Long-shu,GE Rui-feng,WANG Hui-ping.Application of Batch Reinforcement Learning Based on NN to Robocup[J].,2009,(01):98.
[6]贾志先.神经网络在空白试卷识别中的应用[J].计算机技术与发展,2009,(08):208.
 JIA Zhi-xian.Application of Neural Network in Recognization Blank Examination Paper[J].,2009,(01):208.
[7]肖宜龙 路游 亓永刚.基于神经网络的NURBS曲面重建[J].计算机技术与发展,2009,(09):65.
 XIAO Yi-long,LU You,QI Yong-gang.NURBS Surface Reconstruction Based on Neural Network[J].,2009,(01):65.
[8]蔡秋茹 罗烨 柳益君 叶飞跃.企业资信的BP神经网络评估模型研究[J].计算机技术与发展,2009,(10):117.
 CAI Qiu-ru,LUO Ye,LIU Yi-jun,et al.Research on BP Neural Network Model for Corporation Credit Rating[J].,2009,(01):117.
[9]王晓敏 刘希玉 戴芬.BP神经网络预测算法的改进及应用[J].计算机技术与发展,2009,(11):64.
 WANG Xiao-min,LIU Xi-yu,DAI Fen.Improvement and Application of BP Neural Network Forecasting Algorithm[J].,2009,(01):64.
[10]崔海青 刘希玉.基于粒子群算法的RBF网络参数优化算法[J].计算机技术与发展,2009,(12):117.
 CUI Hai-qing,LIU Xi-yu.Parameter Optimization Algorithm of RBF Neural Network Based on PSO Algorithm[J].,2009,(01):117.

备注/Memo

备注/Memo:
江苏省自然科学基础研究基金(07KJD20040)毛明明(1979-),女,浙江奉化人,工程师,研究方向为计算机系统工程和计算机应用
更新日期/Last Update: 1900-01-01