[1]覃迺智 周尚波.求解分数阶微分系统的一种数值算法[J].计算机技术与发展,2011,(01):108-111.
 QIN Nai-zhi,ZHOU Shang-bo.Numerical Algorithm for Solving Fractional Order Differential Systems[J].,2011,(01):108-111.
点击复制

求解分数阶微分系统的一种数值算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年01期
页码:
108-111
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Numerical Algorithm for Solving Fractional Order Differential Systems
文章编号:
1673-629X(2011)01-0108-04
作者:
覃迺智1 周尚波2
[1]南宁地区教育学院数学与计算机科学系[2]重庆大学计算机学院
Author(s):
QIN Nai-zhi ZHOU Shang-bo
[1]Dept. of Mathematics and Computer Science, Nanning Prefecture Edu. Institute[2]College of Computer Science, Chongqing University
关键词:
分数阶微分系数数值算法
Keywords:
fractional order differential coefficient numerical algorithm
分类号:
TP301
文献标志码:
A
摘要:
由于分数阶微分系统具有记忆功能,在其求解过程中计算量较大。文中的目的是针对分数阶Grunwald—Letnikov(GL)定义,研究并寻求一种求解分数阶微分方程的有效数值算法。首先由分数阶GL定义得出分数阶的数值计算公式,进而从理论上分析了算法中分数阶项计算系数的特点,结合计算机数值仿真的结果,得出了远离当前时间的无穷小项一般不可忽略的结论,并设计了一种合理有效的计算方法。计算机数值仿真的结果表明,所设计的求解分数阶微分方程的算法精度高,通用性好,且易于编程实现
Abstract:
The calculation work of solving a fractional order differential system is huge since it relating to history. In this brief, for the fractional order dinfinition of Grunwald-Lemikov ( GL), an effective numerical algorithm for solving fractional order differential systems is investigated. Firstly, the numerical calculation formula of fractional order dinfinition of GL is designed. Secondly, the coefficients of the fractional order term are analyzed theoricaUy, combining with the computer simulation, conclude that the infinitesimal which long away from current can not be omitted. A reasonable effective algorithm is designed well. The results of computer simulation show that the proposed algorithm is a high precision, general one, and it is easy to be programmed

备注/Memo

备注/Memo:
国家自然科学基金(60873200)覃迺智(1964-),广西马山人,讲师,研究方向为计算机应用、算法设计与分析;周尚波,教授,研究方向为信息安全、混沌及其控制理论
更新日期/Last Update: 1900-01-01