[1]王卫东 屈洋.病历随访系统中数据挖掘的Apriori算法研究[J].计算机技术与发展,2010,(10):4-7.
 WANG Wei-dong,QU Yang.Apriori Algorithm Research of Data Mining in Case History and Follow-Up System[J].,2010,(10):4-7.
点击复制

病历随访系统中数据挖掘的Apriori算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2010年10期
页码:
4-7
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Apriori Algorithm Research of Data Mining in Case History and Follow-Up System
文章编号:
1673-629X(2010)10-0004-04
作者:
王卫东1 屈洋2
[1]暨南大学计算中心[2]暨南大学医学院
Author(s):
WANG Wei-dongQU Yang
[1]Computer Center,Jinan University[2]Medicine College,Jinan University
关键词:
病历随访数据库系统数据挖掘Apriori规则算法
Keywords:
the case history and follow-up database system data mining Apriori algorithm
分类号:
TP301.6
文献标志码:
A
摘要:
从存储成千上万份病历的病历随访数据库系统中挖掘出诊断所需的有价值数据,需要掌握有效的挖掘算法实现诊疗方面的数据挖掘。详细论述了数据挖掘的理念和如何根据病历随访数据库内庞大的数据群建立所需的关联规则方法。通过Apriori规则算法分析,建立起目的性极强的数据间的关联规则。通过讨论可以看出选择恰当的关联规则算法不仅可以提高在病历随访数据库中数据挖掘的效率,而且为建立某种疾病的诊疗信息库奠定了基础
Abstract:
Picking up data needed by diagnosis from thousands and thousands of cases stored in case history and follow-up database system,hold a effective mining algorithm to realize data mining of disease treatment.In this study,discuss in detail the theory of data mining and the related practical method of constructing a rule of correlation depending on the mountain of data in the case history and follow-up database.Through Apriori algorithm analysis,constructed a highly purposive correlation rule among the data.Through discussion,see that a suitable Apriori algorithm for the construction of a correlation rule will not only increase the efficiency of data mining in case history and follow-up database,but also set foundation for building a disease treatment information database

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(10):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(10):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(10):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(10):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(10):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(10):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(10):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(10):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(10):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(10):113.

备注/Memo

备注/Memo:
教育部留学回国人员科研启动基金(教外司留[1999]363号)王卫东(1956-),男,山西人,教授,从事计算机的教学与软件开发应用. 屈洋,教授,从事临床医学和汁算机在医学方面的应用研究
更新日期/Last Update: 1900-01-01