[1]王必强 毕硕本 董学士.基于单层感知器的数据挖掘分类的设计和实现[J].计算机技术与发展,2010,(09):111-114.
 WANG Bi-qiang,BI Shuo-ben,DONG Xue-shi.Design and Implementation of Classification Mining Based on Single-Layer Perceptron Artificial Neural Network[J].,2010,(09):111-114.
点击复制

基于单层感知器的数据挖掘分类的设计和实现()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2010年09期
页码:
111-114
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Design and Implementation of Classification Mining Based on Single-Layer Perceptron Artificial Neural Network
文章编号:
1673-629X(2010)09-0111-04
作者:
王必强 毕硕本 董学士
南京信息工程大学计算机与软件学院
Author(s):
WANG Bi-qiangBI Shuo-benDONG Xue-shi
School of Computer & Software,Nanjing University of InformationScience & Technology
关键词:
单层感知器神经网络分类数据挖掘
Keywords:
single sensor neural network classification data mining
分类号:
TP311
文献标志码:
A
摘要:
数据挖掘是指从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是潜在有用信息。分类是数据挖掘重要研究方向之一,其目的就是分析输入数据,通过分析在训练集中的数据表现出来的特性,为每一个类找到一种准确的描述或者模型。怎样用科学合适的方式来解决分类问题,是数据挖掘研究领域的一个热点和难点。通过构造一种单层感知器神经网络的分类方法,对其进行设计分析和仿真实验,用图文并貌的界面形象直观地展示了分类效果,实验表明单层感知器神经网络可有效地进行数据挖掘分类
Abstract:
Data mining is to extract the interested potential knowledge from the large database and data warehouse.Classification is one of the most important research directions of data mining,which aims to find an accurate description or model for each category by analyzing the characteristics of data in the training set.How to solve the problem of classification in a scientific way is a hot spot and difficulty in the field of data mining research.In this paper,propose a data mining classification method based on the single-layer perceptron neural network.Some simulation experiments are made to verify the effectiveness and the feasibility of the proposed methods,and the classification results are graphically displayed and demonstrate that the single-layer perceptron neural network can be used to solve the problem of classification data mining effectively

相似文献/References:

[1]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(09):84.
[2]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(09):148.
[3]包力伟 周俊.铸锻企业生产质量控制系统的开发[J].计算机技术与发展,2008,(04):174.
 BAO Li-wei,ZHOU Jun.Development of a Manufacture Quality Control System in Casting Company[J].,2008,(09):174.
[4]李志俊 程家兴 金奎 饶玉佳.基于样本期望训练数的BP神经网络改进研究[J].计算机技术与发展,2009,(05):103.
 LI Zhi-jun,CHENG Jia-xing,JIN Kui,et al.BP Algorithm Improvement Based on Sample Expected Training Number[J].,2009,(09):103.
[5]李龙澍 葛瑞峰 王慧萍.基于神经网络的批强化学习在Robocup中的应用[J].计算机技术与发展,2009,(07):98.
 LI Long-shu,GE Rui-feng,WANG Hui-ping.Application of Batch Reinforcement Learning Based on NN to Robocup[J].,2009,(09):98.
[6]贾志先.神经网络在空白试卷识别中的应用[J].计算机技术与发展,2009,(08):208.
 JIA Zhi-xian.Application of Neural Network in Recognization Blank Examination Paper[J].,2009,(09):208.
[7]肖宜龙 路游 亓永刚.基于神经网络的NURBS曲面重建[J].计算机技术与发展,2009,(09):65.
 XIAO Yi-long,LU You,QI Yong-gang.NURBS Surface Reconstruction Based on Neural Network[J].,2009,(09):65.
[8]蔡秋茹 罗烨 柳益君 叶飞跃.企业资信的BP神经网络评估模型研究[J].计算机技术与发展,2009,(10):117.
 CAI Qiu-ru,LUO Ye,LIU Yi-jun,et al.Research on BP Neural Network Model for Corporation Credit Rating[J].,2009,(09):117.
[9]王晓敏 刘希玉 戴芬.BP神经网络预测算法的改进及应用[J].计算机技术与发展,2009,(11):64.
 WANG Xiao-min,LIU Xi-yu,DAI Fen.Improvement and Application of BP Neural Network Forecasting Algorithm[J].,2009,(09):64.
[10]崔海青 刘希玉.基于粒子群算法的RBF网络参数优化算法[J].计算机技术与发展,2009,(12):117.
 CUI Hai-qing,LIU Xi-yu.Parameter Optimization Algorithm of RBF Neural Network Based on PSO Algorithm[J].,2009,(09):117.

备注/Memo

备注/Memo:
中国气象局公益性行业科研专项经费资助项目(GYHY200806017)王必强(1983-),男,陕西澄城人,硕士研究生,研究方向为信息融合、GIS、人工智能等;毕硕本,教授,博士后,研究方向为地理信息系统(GIS)、数据挖掘、人工智能等
更新日期/Last Update: 1900-01-01