[1]汤义强 毛军军 李侠 程白彬.基于粗集属性约简的电力供应量SVM回归预测[J].计算机技术与发展,2010,(09):48-51.
 TANG Yi-qiang,MAO Jun-jun,LI Xia,et al.China's Power Supply SVM Regression Forecast Based on Rough Set Attribute Reduction[J].,2010,(09):48-51.
点击复制

基于粗集属性约简的电力供应量SVM回归预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2010年09期
页码:
48-51
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
China's Power Supply SVM Regression Forecast Based on Rough Set Attribute Reduction
文章编号:
1673-629X(2010)09-0048-04
作者:
汤义强1 毛军军12 李侠1 程白彬1
[1]安徽大学数学科学院[2]安徽大学计算智能与信号处理教育部重点实验室
Author(s):
TANG Yi-qiangMAO Jun-junLI XiaCHENG Baibin
[1]School of Mathematical Sciences,Anhui University[2]Ministry of Edu.Key Lab.of Intelligent Computing & Signal Processing,Anhui Univ
关键词:
支持向量机回归粗糙集属性约简预测
Keywords:
support vector machine regression rough sets attribute reduction forecast
分类号:
TP18
文献标志码:
A
摘要:
采用基于粗糙集属性约简的支持向量机回归预测模型对我国电力供应量进行预测。根据电力供应量及其影响因素的历史数据建立决策表,利用动态层次聚类法对决策表中的连续属性进行了离散化;运用属性约简算法进行约简,提取出主要因素,并将其作为样本的特征,应用支持向量机回归预测模型对电力供应量进行预测。五年预测结果表明:与SVR模型相比,结合了属性约简方法的RS&SVR模型充分利用了更少但是主要的预测因子的信息,预测精度有一定提高,应用效果较好
Abstract:
The application of RSSVR method,which is support vector machine regression(SVR) based on attribute reduction algorithm of rough sets,on forecast of China's power supply is dealt with in this paper.According to historical data of power output and its influencing factors,a decision table is built up,and discretization of continuous attributes in the table is done by means of dynamic layer cluster.Using the attribute reduction algorithm to eliminate some redundant attributes from the table,the kernel factors are determined.Taking these kernel factors as the attributes of both training and testing samples,the power supply forecasting is conducted.Five-year forecasting results show that,compared with SVR which chooses attributes of input vectors in light of experience,the method of RSSVR could make use of less but cardinal predictors' information,and the forecasting accuracy is improved

相似文献/References:

[1]夏奇思 王汝传.基于属性约简的粗糙集海量数据分割算法研究[J].计算机技术与发展,2010,(04):5.
 XIA Qi-si,WANG Ru-chuan.Mass Data Partition for Rough Set on Attribute Reduction Algorithm[J].,2010,(09):5.
[2]张政超 关欣[] 何友 李应升 郭伟峰.粗糙集理论数据处理方法及其研究[J].计算机技术与发展,2010,(04):12.
 ZHANG Zheng-chao,GUAN Xin[],HE You,et al.Rough Sets Data Processing Method and Its Research[J].,2010,(09):12.
[3]杨乐婵 邓松 徐建辉.基于BP网络的洪灾风险评价算法[J].计算机技术与发展,2010,(04):232.
 YANG Le-chan,DENG Song,XU Jian-hui.Flood Risk Evaluation Algorithm on BP Net[J].,2010,(09):232.
[4]张学友 苗强 毛军军.基于粗糙度的一种分形维数计算方法[J].计算机技术与发展,2010,(05):136.
 ZHANG Xue-you,MIAO Qiang,MAO Jun-jun.A Calculation Method of Fractal Dimension Based on Roughness[J].,2010,(09):136.
[5]王伟 高亮 吴涛.粗糙集在经济分析中的应用[J].计算机技术与发展,2008,(04):158.
 WANG Wei,GAO Liang,WU Tao.Application of Rough Set in Economic Analysis[J].,2008,(09):158.
[6]李学文 王小刚.优势信息系统的属性约简算法[J].计算机技术与发展,2009,(08):107.
 LI Xue-wen,WANG Xiao-gang.Algorithm on Attribute Reduction in Dominance Information System Based on Dominance Relation[J].,2009,(09):107.
[7]徐沈 吴涛[] 李国成.产业结构调整的量化分析[J].计算机技术与发展,2009,(08):178.
 XU Shen,WU Tao,LI Guo-cheng.Quantitative Analysis on Adjustment of Industrial Structure[J].,2009,(09):178.
[8]申锦标 吕跃进.粗糙集的近似约简及其算法[J].计算机技术与发展,2009,(12):17.
 SHEN Jin-biao,LU Yue-jin.A Rough Set of Approximate Attribute Reduction and Its Algorithm[J].,2009,(09):17.
[9]王小菊 蒋芸 李永华.基于依赖度之差的属性重要性评分[J].计算机技术与发展,2009,(01):67.
 WANG Xiao-ju,JIANG Yun,LI Yong-hua.Significance of Attribute Evaluation Based on Dependable Difference[J].,2009,(09):67.
[10]汪小燕 杨思春.基于改进的二进制可辨矩阵的核增量式更新方法[J].计算机技术与发展,2009,(01):97.
 WANG Xiao-yan,YANG Si-chun.An Incremental Updating Approach to Compute a Core Based on Improved Binary Discernable Matrix[J].,2009,(09):97.

备注/Memo

备注/Memo:
国家自然科学基金(60675031); 安徽省高等学校省级自然科学研究项目(KJ2008B093); 安徽大学创新性实验项目(30007)汤义强(1984-),男,安徽巢湖人,硕士研究生,研究方向为粗糙集、运筹控制;毛军军,博士,副教授,研究方向是粒计算、智能计算理论及其应用
更新日期/Last Update: 1900-01-01