[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120-124.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(01):120-124.
点击复制

基于聚类高维空间算法的离群数据挖掘技术研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2010年01期
页码:
120-124
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Study of Outlier Data Mining Based on CLIQUE Algorithm
文章编号:
1673-629X(2010)01-0124-04
作者:
项响琴12 汪彩梅2
[1]安徽大学计算机科学与技术学院[2]合肥学院网络与智能信息处理中心实验室
Author(s):
XIANG Xiang-qin12WANG Cai-mei2
[1]Dept. of Computer Science & Engineering, Anhui University[2]Laboratory of Network and Intelligent Information Management, Hefei University
关键词:
数据挖掘离群点聚类分析CLIQUE算法
Keywords:
data mining outlier clustering analysis CLIQUE algorithm
分类号:
TP311.5
文献标志码:
A
摘要:
离群数据挖掘是数据挖掘领域的一个研究分支,而聚类算法分析则是进行离群数据挖掘的重要研究方法之一。文中首先分析研究离群数据挖掘方法,对多个离群数据挖掘算法进行分析比较,讨论各自的优点和不足,同时针对高维空间数据的特点,分析挖掘高维空间数据中的离群点方法。其次对聚类分析算法进行讨论,分析一种基于网格和基于密度的聚类方法——聚类高维空间算法(CLIQUE算法),运用它可以更好地挖掘高维空间中的离群数据。提出了CLIQUE算法的有待改进的思想,为以后的研究指明方向。
Abstract:
As a branch of data-mining,outlier mining is a promising prospect,and clustering analysis is a kind of technology in spatial outlier mining.Analyse the clustering arithmetic,compare some arithmetic of clustring,and discuss the strongpoint and shortpoint o

相似文献/References:

[1]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(01):235.
[2]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(01):114.
[3]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(01):229.
[4]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(01):143.
[5]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(01):93.
[6]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(01):105.
[7]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(01):84.
[8]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(01):109.
[9]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(01):113.
[10]孙名松 邸明星 王湛昱.多决策树算法在P2P网络流量检测中的应用[J].计算机技术与发展,2010,(06):126.
 SUN Ming-song,DI Ming-xing,WANG Zhan-yu.Application of Decision Tree Algorithm in Traffic Detection of P2P Network[J].,2010,(01):126.

备注/Memo

备注/Memo:
项响琴(1976-),女,讲师,硕士研究生。研究方向为数据挖掘与智能软件。安徽省自然科学基金项目(KJ2009B122,KJ2008B03)
更新日期/Last Update: 1900-01-01