相似文献/References:
[1]游芳 姜建国 张坤.基于二维属性的高维数据聚类算法研究[J].计算机技术与发展,2009,(05):111.
YOU Fang,JIANG Jian-guo,ZHANG Kun.Cluster- Algorithm Studies Based on Two- Dimensional Attribute Higher - Dimension Data[J].,2009,(03):111.
[2]邵昌昇 楼巍 严利民.高维数据中的相似性度量算法的改进[J].计算机技术与发展,2011,(02):1.
SHAO Chang-sheng,LOU Wei,YAN Li-min.Optimization of Algorithm of Similarity Measurement in High-Dimensional Data[J].,2011,(03):1.
[3]包小兵 翟素兰 程兰兰.基于信息熵加权的局部离群点检测算法[J].计算机技术与发展,2012,(09):59.
BAO Xiao-bing,ZHAI Su-lan,CHENG Lan-lan.SLOM Outlier Mining Algorithm Based on Entropy Weighted[J].,2012,(03):59.
[4]王晓阳,张洪渊,沈良忠,等.基于相似性度量的高维数据聚类算法研究[J].计算机技术与发展,2013,(05):30.
WANG Xiao-yang,ZHANG Hong-yuan,SHEN Liang-zhong,et al.Research on High Dimensional Clustering Algorithm Based on Similarity Measurement[J].,2013,(03):30.
[5]成小海.基于 Spark 的高维数据相似性连接[J].计算机技术与发展,2018,28(08):43.[doi:10.3969/ j. issn.1673-629X.2018.08.009]
CHENG Xiao-hai.Similarity Joins of High-dimensional Data Based on Spark[J].,2018,28(03):43.[doi:10.3969/ j. issn.1673-629X.2018.08.009]
[6]李 寒,余 斌,佟 宁,等.一种电力感知数据的离群点检测方案[J].计算机技术与发展,2020,30(02):153.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 030]
LI Han,YU Bin,TONG Ning,et al.An Electric Power Sensor Data Oriented Outlier Detection Solution[J].,2020,30(03):153.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 030]
[7]甄俊涛,刘 臣.高维数据多标签分类的食品安全预警研究[J].计算机技术与发展,2020,30(09):109.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 020]
ZHEN Jun-tao,LIU Chen.Research on Food Safety Early Warning of Multi-label Classification of High Dimensional Data[J].,2020,30(03):109.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 020]
[8]刘俊成,董 东.基于相对比重的扩展隔离森林算法[J].计算机技术与发展,2023,33(06):16.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 003]
LIU Jun-cheng,DONG Dong.Extended Isolation Forest Algorithm Based on Relative Proportion[J].,2023,33(03):16.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 003]
[9]高亚星,赵旭俊,曹栩阳.基于融合数据自表示的离群点检测算法[J].计算机技术与发展,2023,33(12):41.[doi:10. 3969 / j. issn. 1673-629X. 2023. 12. 006]
GAO Ya-xing,ZHAO Xu-jun,CAO Xu-yang.An Outlier Detection Algorithm Based on Fusion Data Self-representation[J].,2023,33(03):41.[doi:10. 3969 / j. issn. 1673-629X. 2023. 12. 006]