[1]朱建平 曾玉钰.基于属性重要性的定性数据聚类分析及应用[J].计算机技术与发展,2007,(12):89-91.
 ZHU Jian-ping,ZENG Yu-yu.Analysis and Application of Qualitative Data Clustering Approach Based on Attribute Importance[J].,2007,(12):89-91.
点击复制

基于属性重要性的定性数据聚类分析及应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年12期
页码:
89-91
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Analysis and Application of Qualitative Data Clustering Approach Based on Attribute Importance
文章编号:
1673-629X(2007)12-0089-03
作者:
朱建平 曾玉钰
厦门大学经济学院计划统计系
Author(s):
ZHU Jian-ping ZENG Yu-yu
Dept. of Planning and Statistics, School of Economics, Xiamen University
关键词:
属性重要性聚类分析粗糙集等价关系
Keywords:
attribute importance clustering analysis rough set equivalence relation
分类号:
TP301.6
文献标志码:
A
摘要:
传统的聚类方法大多是基于距离或者是样品间相似度的,这就要求所分析的数据必须是定量的。但是在数据挖掘中,存在着大量的定性数据,传统的聚类分析方法已不再是一个可行的方法,这就需要寻找一个可以有效处理定性数据的聚类方法。粗糙集是处理定性数据的有效方法,在详细阐述粗糙集的相关概念后,利用属性重要性的概念,提出了一种能有效处理定性数据的聚类分析方法,并利用了数据对该方法进行了实证分析,取得了良好的结果
Abstract:
Most of the current clustering approaches are based on the distance among the data or of the similarity of the data, which makes the data analyzed must be quantifiable data. In data mining, there are many qualitative data. That makes the traditional clustering techniques are not useful in tackling the qualitative data as hoped, So need to find an effective clustering method to cope with the qualitative data. Rough set is an useful tool to deal with the qualitative data. After explicating the relative concepts of the rough set, introduced a new clustering approach by using attribute importance concept, which can deal with the high dimensions data effectively. At last, make an empirical analysis of the data and obtain a good clustering result

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(12):120.
[2]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].,2009,(12):69.
[3]狄明明 孙德山.聚类分析和支持向量机在股票研究中的应用[J].计算机技术与发展,2009,(06):229.
 DI Ming-ming,SUN De-shan.Applications of Cluster Analysis and Support Vector Machines to Stock Research[J].,2009,(12):229.
[4]李雷 罗红旗 丁亚丽.一种改进的模糊C均值聚类算法[J].计算机技术与发展,2009,(12):71.
 LI Lei,LUO Hong-qi,DING Ya-li.A Novel FCM Clustering Algorithm[J].,2009,(12):71.
[5]王小菊 蒋芸 李永华.基于依赖度之差的属性重要性评分[J].计算机技术与发展,2009,(01):67.
 WANG Xiao-ju,JIANG Yun,LI Yong-hua.Significance of Attribute Evaluation Based on Dependable Difference[J].,2009,(12):67.
[6]李丽芳 周鸣争.一种基于构造性核覆盖的聚类算法[J].计算机技术与发展,2009,(01):88.
 LI Li-fang,ZHOU Ming-zheng.A Clustering Algorithm Based on Constructive Kernel Covering Algorithm[J].,2009,(12):88.
[7]朱桂宏 王刚.基于数据流的网络入侵检测研究[J].计算机技术与发展,2009,(03):175.
 ZHU Gui-hong,WANG Gang.Research on Network Intrusion Detection Based on Data Stream[J].,2009,(12):175.
[8]罗世谦 冯子亮 张恒.一种基于能量聚类分析的句子语音端点检测法[J].计算机技术与发展,2008,(04):13.
 LUO Shi-qian,FENG Zi-liang,ZHANG Heng.A Sentential Endpoint Detection Algorithm Based on Energy Eigenvalue and Clustering Analysis[J].,2008,(12):13.
[9]谢铮桂 韦玉科 钟少丹.基于径向基神经网络用于中医舌诊诊断的研究[J].计算机技术与发展,2008,(09):242.
 XIE Zheng-gui,WEI Yu-ke,ZHONG Shao-dan.Research of RBF Neural Networks Based on Clustering Analysis in TCM Inspection of Tongue Diagnosis[J].,2008,(12):242.
[10]刘飞 孔媛媛 杨习贝.一种基于粗糙集属性频度约简算法的改进[J].计算机技术与发展,2008,(12):95.
 LIU Fei,KONG Yuan-yuan,YANG Xi-bei.An Improvement of Reduct Algorithm Based on Rough Set of Attributes Frequency[J].,2008,(12):95.

备注/Memo

备注/Memo:
国家教育部“新世纪优秀人才支持计划”资助(NCET-04-0608)朱建平(1962-),男,河南浚县人,教授,博士生导师,研究方向为数理统计、数据挖掘
更新日期/Last Update: 1900-01-01