[1]张葵 袁细国.基于模糊集的免疫克隆选择算法[J].计算机技术与发展,2007,(12):24-26.
 ZHANG Kui,YUAN Xi-guo.An Immune Colon Selective Algorithm Based on Fuzzy- Set[J].,2007,(12):24-26.
点击复制

基于模糊集的免疫克隆选择算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年12期
页码:
24-26
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
An Immune Colon Selective Algorithm Based on Fuzzy- Set
文章编号:
1673-629X(2007)12-0024-03
作者:
张葵 袁细国
武汉科技大学计算机科学与技术学院
Author(s):
ZHANG Kui YUAN Xi-guo
Sch. of Computer Science & Technology, Wuhan University of Science & Technology
关键词:
入侵检测人工免疫克隆选择算法模糊集合
Keywords:
intrusion detection artificial immune colon selective algorithm fuzzy - set
分类号:
TP393.08
文献标志码:
A
摘要:
分析了将人工免疫原理应用到入侵检测系统中存在的不足。为了克服传统的基于精确数学模型免疫算法的局限性,提出了一种基于模糊集理论的免疫克隆选择算法,引入了模糊集合和隶属度的概念,采用了一种动态的智能优化策略,有效地改善了检测元的特性,提高了检测元在复杂网络环境下的适应能力,从而增强了网络的安全性。分析了该算法能在一定程度上弥补反向选择算法的不足
Abstract:
After analyzing the inadequacy occurring in the application of artificial immune theory to intrusion detection systems, in order to overcome the limitation lled at the traditional immune algorithm based on exact mathematic model, proposes an immune colon .selective algorithm based on fuzzy- set. Introduces the concept of fuzzy- set and degree of membership, effectively optimizes the detectors' characteristics. The detector adaptive is improved to gear to the complex network environment and the computer security is enhanced. Finally, analyze the new algorithm which can supplement the shortages of negative selection at a certain degree

相似文献/References:

[1]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(12):143.
[2]马志远,曹宝香.改进的决策树算法在入侵检测中的应用[J].计算机技术与发展,2014,24(01):151.
 MA Zhi-yuan,CAO Bao-xiang.Application of Improved Decision Tree Algorithm in Intrusion Detection System[J].,2014,24(12):151.
[3]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(12):148.
[4]林英 张雁 欧阳佳.日志检测技术在计算机取证中的应用[J].计算机技术与发展,2010,(06):254.
 LIN Ying,ZHANG Yan,OU Yang-jia.Application of Log Testing Technology in Computer Forensics[J].,2010,(12):254.
[5]李钦 余谅.基于免疫遗传算法的网格入侵检测模型[J].计算机技术与发展,2009,(05):162.
 LI Qin,YU Liang.Grid Intrusion Detection Model Based on Immune Genetic Algorithm[J].,2009,(12):162.
[6]黄世权.网络存储安全分析[J].计算机技术与发展,2009,(05):170.
 HUANG Shi-quan.Analysis of Network Storage's Safety[J].,2009,(12):170.
[7]李睿 肖维民.基于孤立点挖掘的异常检测研究[J].计算机技术与发展,2009,(06):168.
 LI Rui,XIAO Wei-min.Research on Anomaly Intrusion Detection Based on Outlier Mining[J].,2009,(12):168.
[8]胡琼凯 黄建华.基于协议分析和决策树的入侵检测研究[J].计算机技术与发展,2009,(06):179.
 HU Oiong-kai,HUANG Jian-hua.Intrusion Detection Based on Protocol Analysis and Decision Tree[J].,2009,(12):179.
[9]汪世义.基于优化支持向量机的网络入侵检测技术研究[J].计算机技术与发展,2009,(07):177.
 WANG Shi-yi.Network Intrusion Detection Based on Improved Support Vector Machine[J].,2009,(12):177.
[10]薛俊 陈行 陶军.一种基于神经网络的入侵检测技术[J].计算机技术与发展,2009,(08):148.
 XUE Jun,CHEN Hang,TAO Jun.Technology of Intrusion Detection Based on Neural Network[J].,2009,(12):148.
[11]付玉珍 胡彧 张清华.一种新的自适应网络入侵检测模型[J].计算机技术与发展,2008,(09):148.
 FU Yu-zhen,HU Yu,ZHANG Qing-hua.A New Model of Self- Adaptive Network Intrusion Detection[J].,2008,(12):148.

备注/Memo

备注/Memo:
湖北省教育重点科研项目基金(2004D006)张葵(1970-),女,湖北武汉人,硕士研究生,研究方向为模糊信息处理、计算机网络安全
更新日期/Last Update: 1900-01-01