[1]宓浩 张燕平.基于特征投影和交叉覆盖神经网络的车牌识别[J].计算机技术与发展,2007,(10):76-79.
 MI Hao,ZHANG Yan-ping.License Plate Location Based on Projection Character and Alternate Covering Neural Network[J].,2007,(10):76-79.
点击复制

基于特征投影和交叉覆盖神经网络的车牌识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年10期
页码:
76-79
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
License Plate Location Based on Projection Character and Alternate Covering Neural Network
文章编号:
1673-629X(2007)10-0076-04
作者:
宓浩 张燕平
安徽大学计算智能与信号处理教育部重点实验室
Author(s):
MI HaoZHANG Yan-ping
Ministry of Education Key Lab. of Intelligence Computing and Signal Processing, Anhui University
关键词:
特征投影汉字识别车牌识别交叉覆盖神经网络
Keywords:
proieetion character Chine characters recognition license plate recognition alternate covering neural network
分类号:
TP391.4
文献标志码:
A
摘要:
汽车牌照的自动识别在智能交通系统中占有重要地位,应用前景广阔。在自动识别过程中,牌照中的数字和汉字具有数量少和字体特征固定的特点,故其投影特征明显,利用此性质可以对车牌汉字进行快速分类,但精度不高。神经网络分类准确,且有很强的鲁棒性,但运算量大,识别时间太长且数据不易收敛。文中提出的基于投影和交叉覆盖神经网络的车牌识别方法充分融合利用了两者的优点,克服了各自的不足,达到了较好的结果
Abstract:
The recognition of vehicle license plate plays a very important role in intelligence transportation system. It has wide application ranges. In automatic recognition process, the Chinese character in the car license has the quantity to be few and the font characteristics are inherent, therefore its projection characteristic is obvious. Using projection characteristic to recognize license plate can be used for rapid classification. But the precision is not high. Neural network classification is accurate, and has strong robusmess, but the operation is large, also not easy to restrain. In this paper, license plate location based on projection character and alternate covering neural network method can be used to combine the advantages of them, and overcome the shortcomings of them, so it can achieve better results

相似文献/References:

[1]王建平 陈军 徐晓冰 王熹徽.基于SVM的脱机手写汉字机器学习识别方法研究[J].计算机技术与发展,2006,(10):104.
 WANG Jian-ping,CHEN Jun,XU Xiao-bing,et al.Research on Method of Off- Line Handwritten Chinese Characters Recognition Based on SVM[J].,2006,(10):104.
[2]桂丹萍 陈佳祥 何红生.视频检索在汉字识别中的应用研究[J].计算机技术与发展,2010,(10):207.
 GUI Dan-ping,CHEN Jia-xiang,HE Hong-sheng.Application Research of Video Retrieval Model on Chinese Character Recognition[J].,2010,(10):207.
[3]武子毅,刘亮亮,张再跃.基于集成注意力层卷积神经网络的汉字识别[J].计算机技术与发展,2018,28(08):100.[doi:10.3969/ j. issn.1673-629X.2018.08.021]
 WU Zi-yi,LIU Liang-liang,ZHANG Zai-yue.Chinese Character Recognition of Convolutional Neural Network of Integration Attention Layer[J].,2018,28(10):100.[doi:10.3969/ j. issn.1673-629X.2018.08.021]

备注/Memo

备注/Memo:
安徽省自然科学研究基金(050420208)宓浩(1981-),男,山东人,硕士研究生,研究方向为智能计算;张燕平,博士,教授,研究领域为人工种经网络、机器学习、人工智能在金融工程中的应用
更新日期/Last Update: 1900-01-01