[1]孙林 徐久成 马媛媛.基于决策熵的决策树规则提取方法[J].计算机技术与发展,2007,(06):97-100.
 SUN Lin,XU Jiu-cheng,MA Yuan-yuan.Algorithm for Rules Extraction of Decision Tree Based on Decision Information Entropy[J].,2007,(06):97-100.
点击复制

基于决策熵的决策树规则提取方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年06期
页码:
97-100
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Algorithm for Rules Extraction of Decision Tree Based on Decision Information Entropy
文章编号:
1673-629X(2007)06-0097-04
作者:
孙林 徐久成 马媛媛
河南师范大学计算机与信息技术学院
Author(s):
SUN Lin XU Jiu-cheng MA Yuan-yuan
College of Computer & Information Technology, Henan Normal University
关键词:
粗糙集决策熵决策树决策规则
Keywords:
rough set decision information entropy decision tree decision rules
分类号:
TP18
文献标志码:
A
摘要:
在决策表中,决策规则的可信度和对象覆盖度是衡量决策能力的重要指标。以知识粗糙熵为基础,提出决策熵的概念,并定义其属性重要性;然后以条件属性子集的决策熵来度量其对决策分类的重要性,自顶向下递归构造决策树;最后遍历决策树,简化所获得的决策规则。该方法的优点在于构造决策树及提取规则前不进行属性约简,计算直观,时间复杂度较低。实例分析的结果表明,该方法能获得更为简化有效的决策规则
Abstract:
In decision table, the reliability and objects coverage of decision rules are the most important performance metric for estimating decision ability. Based on rough entropy of knowledge, a new decision information entropy is proposed. The new significance of an attribute is defined, which is based on this entropy. In the process of constructing decision tree, condition attributes are considered to estimate the significance for decision classes. A procedure for reduction of traversing decision rules is also constructed, and helps to get more precise rules. The benefit of the method is that it needn't attribute reduction before extracting decision rules, and its computation is simple and intuitionistic. The experiment and comparison show that the algorithm provides more precise and simple decision rules

相似文献/References:

[1]夏奇思 王汝传.基于属性约简的粗糙集海量数据分割算法研究[J].计算机技术与发展,2010,(04):5.
 XIA Qi-si,WANG Ru-chuan.Mass Data Partition for Rough Set on Attribute Reduction Algorithm[J].,2010,(06):5.
[2]张政超 关欣[] 何友 李应升 郭伟峰.粗糙集理论数据处理方法及其研究[J].计算机技术与发展,2010,(04):12.
 ZHANG Zheng-chao,GUAN Xin[],HE You,et al.Rough Sets Data Processing Method and Its Research[J].,2010,(06):12.
[3]杨乐婵 邓松 徐建辉.基于BP网络的洪灾风险评价算法[J].计算机技术与发展,2010,(04):232.
 YANG Le-chan,DENG Song,XU Jian-hui.Flood Risk Evaluation Algorithm on BP Net[J].,2010,(06):232.
[4]张学友 苗强 毛军军.基于粗糙度的一种分形维数计算方法[J].计算机技术与发展,2010,(05):136.
 ZHANG Xue-you,MIAO Qiang,MAO Jun-jun.A Calculation Method of Fractal Dimension Based on Roughness[J].,2010,(06):136.
[5]王伟 高亮 吴涛.粗糙集在经济分析中的应用[J].计算机技术与发展,2008,(04):158.
 WANG Wei,GAO Liang,WU Tao.Application of Rough Set in Economic Analysis[J].,2008,(06):158.
[6]李学文 王小刚.优势信息系统的属性约简算法[J].计算机技术与发展,2009,(08):107.
 LI Xue-wen,WANG Xiao-gang.Algorithm on Attribute Reduction in Dominance Information System Based on Dominance Relation[J].,2009,(06):107.
[7]徐沈 吴涛[] 李国成.产业结构调整的量化分析[J].计算机技术与发展,2009,(08):178.
 XU Shen,WU Tao,LI Guo-cheng.Quantitative Analysis on Adjustment of Industrial Structure[J].,2009,(06):178.
[8]申锦标 吕跃进.粗糙集的近似约简及其算法[J].计算机技术与发展,2009,(12):17.
 SHEN Jin-biao,LU Yue-jin.A Rough Set of Approximate Attribute Reduction and Its Algorithm[J].,2009,(06):17.
[9]王小菊 蒋芸 李永华.基于依赖度之差的属性重要性评分[J].计算机技术与发展,2009,(01):67.
 WANG Xiao-ju,JIANG Yun,LI Yong-hua.Significance of Attribute Evaluation Based on Dependable Difference[J].,2009,(06):67.
[10]汪小燕 杨思春.基于改进的二进制可辨矩阵的核增量式更新方法[J].计算机技术与发展,2009,(01):97.
 WANG Xiao-yan,YANG Si-chun.An Incremental Updating Approach to Compute a Core Based on Improved Binary Discernable Matrix[J].,2009,(06):97.
[11]纪滨.信息熵在粗糙集中衍生的几个概念[J].计算机技术与发展,2008,(06):73.
 JI Bin.Several Concepts from Information Entropy in Rough Sets[J].,2008,(06):73.

备注/Memo

备注/Memo:
河南省自然科学基金项目(0511011500);河南省高校新世纪优秀人才支持计划(2006HANCET-19)孙林(1979-),男,河南南阳人,硕士研究生,研究方向为粗糙集理论、数据挖掘; 徐久成,教授,研究方向为粗糙集理论、粒计算、数据挖掘等
更新日期/Last Update: 1900-01-01