[1]苏辉贵 傅秀芬 钟洪 苏辉财[] 韩韬.数据挖掘在入侵检测中的应用[J].计算机技术与发展,2006,(10):143-144.
 SU Hui-gui,FU Xiu-fen,ZHONG Hong,et al.Data Mining Used in Intrusion Detection[J].,2006,(10):143-144.
点击复制

数据挖掘在入侵检测中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年10期
页码:
143-144
栏目:
安全与防范
出版日期:
1900-01-01

文章信息/Info

Title:
Data Mining Used in Intrusion Detection
文章编号:
1673-629X(2006)10-0143-02
作者:
苏辉贵1 傅秀芬1 钟洪2 苏辉财[3] 韩韬1
[1]广东工业大学计算机学院[2]赣南师范学院[3]江铜集团德兴铜矿
Author(s):
SU Hui-gui FU Xiu-fen ZHONG Hong SU Hui-cai HAN Tao
[1]School of Computer, Guangdong University of Technology[2]Gannan Teachers' College[3]Dexing Copper Mine, Jiangxi Copper Corporation
关键词:
入侵检测数据挖掘规则提取模型
Keywords:
intrusion detection data mining rule extraction model
分类号:
TP393.08
文献标志码:
A
摘要:
入侵检测是用于检测任何损害或企图损害系统的保密性、完整性或可用性行为的一种网络安全技术。指出当前入侵检测系统存在的问题,并针对现有入侵检测系统漏报、误报率高的问题,提出将数据挖掘技术应用于入侵检测系统。文中论述了常用的数据挖掘算法,提出一个基于数据挖掘技术入侵检测系统模型、描述了模型体系结构及主要功能。实验表明,该模型能提取特征,生成新规则,找到入侵数据,提高入侵检测系统的有效性
Abstract:
Intrusion detection is a network security technology used to detect the attempt of destroying system secrecy, integrality and usability. The problems of intrusion detection system are described. To solve the problems of intrusion detection system, data mining approach is used. The common used data mining algorithms are described, and an intrusion detection system based on data mining is proposed. Its system architecture and main function are discussed. Our experiment indicates that the model can produce new rules, find intrusion data and increase validity of intrusion detection system

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(10):120.
[2]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(10):235.
[3]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(10):114.
[4]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(10):229.
[5]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(10):93.
[6]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(10):105.
[7]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(10):84.
[8]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(10):109.
[9]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(10):113.
[10]孙名松 邸明星 王湛昱.多决策树算法在P2P网络流量检测中的应用[J].计算机技术与发展,2010,(06):126.
 SUN Ming-song,DI Ming-xing,WANG Zhan-yu.Application of Decision Tree Algorithm in Traffic Detection of P2P Network[J].,2010,(10):126.
[11]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(10):143.
[12]李睿 肖维民.基于孤立点挖掘的异常检测研究[J].计算机技术与发展,2009,(06):168.
 LI Rui,XIAO Wei-min.Research on Anomaly Intrusion Detection Based on Outlier Mining[J].,2009,(10):168.
[13]程玉青 梅登华 陈龙飞.基于数据挖掘的入侵检测系统模型[J].计算机技术与发展,2009,(12):123.
 CHENG Yu-qing,MEI Deng-hua,CHEN Long-fei.A Model of Intrusion Detection System Based on Data Mining[J].,2009,(10):123.
[14]罗军生 李永忠 杜晓.基于模糊C-均值聚类算法的入侵检测[J].计算机技术与发展,2008,(01):178.
 LUO Jun-sheng,LI Yong-zhong,DU Xiao.Intrusion Detection Based on Fuzzy C- Means Clustering Algorithm[J].,2008,(10):178.
[15]何利 谢中.一种MANET入侵检测系统模型研究[J].计算机技术与发展,2008,(07):135.
 HE Li,XIE Zhong.Research of One Intrusion Detection Model for Mobile Ad- hoc Networks[J].,2008,(10):135.
[16]叶和平 尚敏.一种面向入侵检测的数据挖掘算法研究[J].计算机技术与发展,2008,(11):149.
 YE He-ping,SHANG Min.Study on an Intrusion Detection Oriented Data Mining Algorithm[J].,2008,(10):149.
[17]黄烟波 胡波 周忠华.簇技术在移动Adhoc网络入侵检测中的应用研究[J].计算机技术与发展,2007,(04):113.
 HUANG Yan-bo,HU Bo,ZHOU Zhong-hua.Application and Research of Cluster Technology in Intrusion Detection of Mobile Ad hoc Networks[J].,2007,(10):113.
[18]吴玉 李岚 朱明.基于数据挖掘的入侵检测行为数据辨析[J].计算机技术与发展,2007,(07):139.
 WU Yu,LI Lan,ZHU Ming.Behavioral Data Forensics in Intrusion Detection Based on Data Mining[J].,2007,(10):139.
[19]王亚楠 刘方爱.基于数据挖掘和协议分析的可扩充IDS架构[J].计算机技术与发展,2006,(01):223.
 WANG Ya-nan,LIU Fang-ai.An Extensible Framework of Intrusion Detection System Based on Data Mining and Protocol Analysis[J].,2006,(10):223.
[20]李守国 李俊.基于数据挖掘的入侵检测系统设计[J].计算机技术与发展,2006,(04):212.
 LI Shou-guo,LI Jun.Design of Data Mining Based Intrusion Detection System[J].,2006,(10):212.

备注/Memo

备注/Memo:
苏辉贵(1983-),男,江西鹰潭人。硕士研究生,研究方向为网络安全、数据挖掘、协同软件;傅秀芬,教授,硕士生导师,研究方向为网络安全、数据挖掘、协同软件等
更新日期/Last Update: 1900-01-01