[1]秦锋 杨波 程泽凯.分类器性能评价标准研究[J].计算机技术与发展,2006,(10):85-88.
 QIN Feng,YANG Bo,CHENG Ze-kai.Research on Measure Criteria in Evaluating Classification Performance[J].,2006,(10):85-88.
点击复制

分类器性能评价标准研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年10期
页码:
85-88
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research on Measure Criteria in Evaluating Classification Performance
文章编号:
1673-629X(2006)10-0085-04
作者:
秦锋1 杨波12 程泽凯1
[1]安徽工业大学计算机学院[2]通化师范学院计算机系
Author(s):
QIN Feng YANG Bo CHENG Ze-kai
[1]School of Computer Science , Anhui University of Technology[2]Department of Computer Science, Tonghua Teachers College
关键词:
分类性能评价ROCAUC
Keywords:
classification performance measure ROC AUC
分类号:
TP18
文献标志码:
A
摘要:
在数据挖掘领域中,不同分类器建立的模型性能不尽相同。对分类器性能的评价是选择优秀分类器的基础。为了更好地对分类器性能进行评估,文中对分类器性能评价标准进行了研究。分析了传统分类器性能评价标准在应用时存在的一些问题,重点介绍了ROC曲线(the Receiver Operating Characteristic curve)和AUC(the & lea under the ROC curve)评价方法,并剖析了它们的优缺点。对比分析表明,ROC曲线和AUC方法虽然存在着一定的不足,但是在分类器性能评价中所表现出的诱人性质使其必定具有广阔的应用前景
Abstract:
The performances of classification models are different in data mining. How to select a good classifier is based on the evaluation of classifiers performances. Researches the measure criteria of classifiers performances in order to estimate classifiers effectively. The problems about the traditional measure criteria of classifiers performances are analyzed. ROC and AUC are introduced emphatically,and their virtue and shortcoming are anatomized. From the comparison and analysis, it shows that ROC and AUC are so attractive that they will be applied extensively, in spite of their shortcomings

相似文献/References:

[1]韩伟杰 阎慧 董正宏.面向火炮火控系统的嵌入式软件测试平台[J].计算机技术与发展,2010,(03):180.
 HAN Wei-jie,YAN Hui,DONG Zheng-hong.Embedded Software Testing Platform for Gun Fire Control System[J].,2010,(10):180.
[2]刘利 何先平 袁文亮.股票趋势预测中Wrapper方法的研究与应用[J].计算机技术与发展,2010,(01):209.
 LIU Li,HE Xian-ping,YUAN Wen-liang.Research and Application of Wrapper Approach to Stock Trend Prediction[J].,2010,(10):209.
[3]陈锦禾 沈洁.基于信息熵的主动学习半监督分类研究[J].计算机技术与发展,2010,(02):110.
 CHEN Jin-he,SHEN Jie.Active Learning Based on Information Entropy for Semi- supervised Classification[J].,2010,(10):110.
[4]吕秀江 王鹏翔 王德元.基于ART2神经网络算法改进的研究[J].计算机技术与发展,2009,(05):137.
 LU Xiu-jiang,WANG Peng-xiang,WANG De-yuan.Research of an Improved Algorithm Based on ART2 Neural Network[J].,2009,(10):137.
[5]范新 沈闻 丁泉勋 沈洁.基于正例和未标文档的半监督分类研究[J].计算机技术与发展,2009,(06):58.
 FAN Xin,SHEN Wen,DING Quan-xun,et al.Research on Semi- Supervised Classification Based on Positive and Unlabeled Text Document[J].,2009,(10):58.
[6]狄明明 孙德山.聚类分析和支持向量机在股票研究中的应用[J].计算机技术与发展,2009,(06):229.
 DI Ming-ming,SUN De-shan.Applications of Cluster Analysis and Support Vector Machines to Stock Research[J].,2009,(10):229.
[7]汪世义.基于优化支持向量机的网络入侵检测技术研究[J].计算机技术与发展,2009,(07):177.
 WANG Shi-yi.Network Intrusion Detection Based on Improved Support Vector Machine[J].,2009,(10):177.
[8]邱涛 李雯.决策树算法在智能导学系统中的应用[J].计算机技术与发展,2009,(12):189.
 QIU Tao,LI Wen.The Application of Decision Tree Algorithm in Intelligence Teaching System[J].,2009,(10):189.
[9]许春霞 姜浩.基于随机Petri网的工作流仿真[J].计算机技术与发展,2009,(04):87.
 XU Chun-xia,JIANG Hao.Workflow Simulation Based on Stochastic Petri Net[J].,2009,(10):87.
[10]毕俊蕾 任新会 郭拯危.无线传感器网络路由协议分类研究[J].计算机技术与发展,2008,(05):131.
 BI Jun-lei,PEN Xin-hui,GUO Zheng-wei.Research on Routing Protocol Classification for Wireless Sensor Networks[J].,2008,(10):131.

备注/Memo

备注/Memo:
安徽省教育厅自然科学研究项目(2005KJ070:2006KJ061B)秦峰(1962-),男,安徽人,教授,硕士生导师,研究方向为人工智能、数据挖掘、机器学习
更新日期/Last Update: 1900-01-01