[1]顾健辉 孙力娟.数据挖掘技术在入侵检测中的应用研究[J].计算机技术与发展,2006,(09):243-245.
 GU Jian-hui,SUN Li-juan.Application Research of Data Mining Technology to Intrusion Detection[J].,2006,(09):243-245.
点击复制

数据挖掘技术在入侵检测中的应用研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年09期
页码:
243-245
栏目:
安全与防范
出版日期:
1900-01-01

文章信息/Info

Title:
Application Research of Data Mining Technology to Intrusion Detection
文章编号:
1673-629X(2006)09-0243-03
作者:
顾健辉 孙力娟
南京邮电大学计算机学院
Author(s):
GU Jian-hui SUN Li-juan
College of Computer, Nanjing University of Posts and Telecommunications
关键词:
数据挖掘入侵检测IDS网络攻击
Keywords:
data mining intrusion detection IDS network attacks
分类号:
TP393.08
文献标志码:
A
摘要:
随着Internet迅速发展,许多新的网络攻击不断涌现。传统的依赖手工和经验方式建立的基于专家系统的入侵检测系统,由于面临着新的攻击方式及系统升级方面的挑战,已经很难满足现有的应用要求。因此,有必要寻求一种能从大量网络数据中自动发现入侵模式的方法来有效发现入侵。这种方法的主要思想是利用数据挖掘方法,从经预处理的包含网络连接信息的审计数据中提取能够区分正常和入侵的规则。这些规则将来可以被用来检测入侵行为。文中将数据挖掘技术应用到入侵检测中,并对其中一些关键算法进行了讨论。最后提出了一个基于数据挖掘的入侵检测模型。实验证明该模型与传统系统相比,在自适应和可扩展方面具有一定的优势
Abstract:
Along with the rapid development of Internet, many new network attacks emerge unceasingly. Traditional intrusion detection system (IDS) based on expert system depending on handwork and experience, is already very difficult to satisfy the existing application request now, because it is facing challenges from new forms of attacks and system upgrade. So it is necessary to find a method that can extract intrusion patterns from substantive network data automatically. The main idea is to apply data mining methods to learn rules that can capture normal and intrusion activities from pre - processed audit data that contain network connection information. These rules ean be used to detect intrusion behavior later. In this paper, data mining technology has been applied to intrusion detection, some algorithms of data mining have been discussed. Then a model of data- mining based on intrusion detection system has been proposed. The experiment proved that,compared with the traditional system, this model has certain superiority in auto-adaptive and extensive

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(09):120.
[2]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(09):235.
[3]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(09):114.
[4]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(09):229.
[5]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(09):93.
[6]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(09):105.
[7]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(09):84.
[8]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(09):109.
[9]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(09):113.
[10]孙名松 邸明星 王湛昱.多决策树算法在P2P网络流量检测中的应用[J].计算机技术与发展,2010,(06):126.
 SUN Ming-song,DI Ming-xing,WANG Zhan-yu.Application of Decision Tree Algorithm in Traffic Detection of P2P Network[J].,2010,(09):126.
[11]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(09):143.
[12]李睿 肖维民.基于孤立点挖掘的异常检测研究[J].计算机技术与发展,2009,(06):168.
 LI Rui,XIAO Wei-min.Research on Anomaly Intrusion Detection Based on Outlier Mining[J].,2009,(09):168.
[13]程玉青 梅登华 陈龙飞.基于数据挖掘的入侵检测系统模型[J].计算机技术与发展,2009,(12):123.
 CHENG Yu-qing,MEI Deng-hua,CHEN Long-fei.A Model of Intrusion Detection System Based on Data Mining[J].,2009,(09):123.
[14]罗军生 李永忠 杜晓.基于模糊C-均值聚类算法的入侵检测[J].计算机技术与发展,2008,(01):178.
 LUO Jun-sheng,LI Yong-zhong,DU Xiao.Intrusion Detection Based on Fuzzy C- Means Clustering Algorithm[J].,2008,(09):178.
[15]何利 谢中.一种MANET入侵检测系统模型研究[J].计算机技术与发展,2008,(07):135.
 HE Li,XIE Zhong.Research of One Intrusion Detection Model for Mobile Ad- hoc Networks[J].,2008,(09):135.
[16]叶和平 尚敏.一种面向入侵检测的数据挖掘算法研究[J].计算机技术与发展,2008,(11):149.
 YE He-ping,SHANG Min.Study on an Intrusion Detection Oriented Data Mining Algorithm[J].,2008,(09):149.
[17]黄烟波 胡波 周忠华.簇技术在移动Adhoc网络入侵检测中的应用研究[J].计算机技术与发展,2007,(04):113.
 HUANG Yan-bo,HU Bo,ZHOU Zhong-hua.Application and Research of Cluster Technology in Intrusion Detection of Mobile Ad hoc Networks[J].,2007,(09):113.
[18]吴玉 李岚 朱明.基于数据挖掘的入侵检测行为数据辨析[J].计算机技术与发展,2007,(07):139.
 WU Yu,LI Lan,ZHU Ming.Behavioral Data Forensics in Intrusion Detection Based on Data Mining[J].,2007,(09):139.
[19]王亚楠 刘方爱.基于数据挖掘和协议分析的可扩充IDS架构[J].计算机技术与发展,2006,(01):223.
 WANG Ya-nan,LIU Fang-ai.An Extensible Framework of Intrusion Detection System Based on Data Mining and Protocol Analysis[J].,2006,(09):223.
[20]李守国 李俊.基于数据挖掘的入侵检测系统设计[J].计算机技术与发展,2006,(04):212.
 LI Shou-guo,LI Jun.Design of Data Mining Based Intrusion Detection System[J].,2006,(09):212.

备注/Memo

备注/Memo:
江苏省高校自然科学研究基金项目(04MB520095)顾健辉(1981-),男,江苏南通人,硕士研究生,主要研究各为人侵检测
更新日期/Last Update: 1900-01-01