[1]冯利军 李书全 宋连友[].利用粗糙集理论提高SVM预测系统的实时性[J].计算机技术与发展,2006,(09):30-31.
 FENG Li-jun,LI Shu-quan,SONG Lian-you.Improving Real - Time Character of Prediction System Based on SVM Using RS Theory[J].,2006,(09):30-31.
点击复制

利用粗糙集理论提高SVM预测系统的实时性()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年09期
页码:
30-31
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Improving Real - Time Character of Prediction System Based on SVM Using RS Theory
文章编号:
1673-629X(2006)09-0030-02
作者:
冯利军12 李书全1 宋连友[3]
[1]天津财经大学[2]河北农业大学[3]沧州师范专科学校
Author(s):
FENG Li-jun LI Shu-quan SONG Lian-you
[1]Tianjin University of Finance and Economics[2]Agriculture University of Hebei[3]Cangzhou Teacher' s College
关键词:
粗糙集支持向量机预测
Keywords:
rough sets support vector machine prediction
分类号:
TP18
文献标志码:
A
摘要:
支持向量机是一种新的机器学习方法,它具有良好的推广性和分类精确性。但是在利用支持向量机的分类算法处理实际问题时,该算法的计算速度较慢、处理问题效率较低。文中介绍了一种新的学习算法,就是将粗糙集和支持向量机相结合,利用粗糙集对支持向量机的训练样本进行预处理,从而缩短样本的训练时间,提高基于SVM预测系统实时性。文中最后利用该方法进行了数据试验,试验结果表明了该方法可以大大缩短样本的训练时间,提高基于支持向量机处理预测系统的效率。从而也证明了该方法的有效性
Abstract:
Support vector machine is a kind of new machine learning method. This method has good generality capability and better classification accuracy. But when solve real problem using support vector machine, its computation rate is slow and its efficiency is low. Introduce a kind of method that improves the real - time character of prediction system based on SVM in this paper. That can shorten the training time of prediction system based on SVM by preprocessing the training sample of SVM using rough sets theory. At last, carried on data experiments using this method in this paper. The experiments result indicated that this method can shorten the training time greatly and improve the efficiency of prediction system based on support vector machine. Consequently the experiments result proved the validity of this method

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(09):125.
[2]夏奇思 王汝传.基于属性约简的粗糙集海量数据分割算法研究[J].计算机技术与发展,2010,(04):5.
 XIA Qi-si,WANG Ru-chuan.Mass Data Partition for Rough Set on Attribute Reduction Algorithm[J].,2010,(09):5.
[3]陈俏 曹根牛 陈柳.支持向量机应用于大气污染物浓度预测[J].计算机技术与发展,2010,(01):247.
 CHEN Qiao,CAO Gen-niu,CHEN Liu.Application of Support Vector Machine to Atmospheric Pollution Prediction[J].,2010,(09):247.
[4]李晶 姚明海.基于支持向量机的语义图像分类研究[J].计算机技术与发展,2010,(02):75.
 LI Jing,YAO Ming-hai.Research of Semantic Image Classification Based on Support Vector Machine[J].,2010,(09):75.
[5]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(09):17.
[6]张政超 关欣[] 何友 李应升 郭伟峰.粗糙集理论数据处理方法及其研究[J].计算机技术与发展,2010,(04):12.
 ZHANG Zheng-chao,GUAN Xin[],HE You,et al.Rough Sets Data Processing Method and Its Research[J].,2010,(09):12.
[7]曹庆璞 董淑福 罗赟骞.网络时延的混沌特性分析及预测[J].计算机技术与发展,2010,(04):43.
 CAO Qing-pu,DONG Shu-fu,LUO Yun-qian.Chaotic Analysis and Prediction of Internet Time- Delay[J].,2010,(09):43.
[8]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(09):84.
[9]杨乐婵 邓松 徐建辉.基于BP网络的洪灾风险评价算法[J].计算机技术与发展,2010,(04):232.
 YANG Le-chan,DENG Song,XU Jian-hui.Flood Risk Evaluation Algorithm on BP Net[J].,2010,(09):232.
[10]张学友 苗强 毛军军.基于粗糙度的一种分形维数计算方法[J].计算机技术与发展,2010,(05):136.
 ZHANG Xue-you,MIAO Qiang,MAO Jun-jun.A Calculation Method of Fractal Dimension Based on Roughness[J].,2010,(09):136.
[11]刘成忠.两种不确定支持向量机分类性能的对比研究[J].计算机技术与发展,2011,(11):156.
 LIU Cheng-zhong.Comparative Study on Classification Performances of Two Indeterminate Support Vector Machines[J].,2011,(09):156.

备注/Memo

备注/Memo:
天津市教委十五综合投资项目(2004BA11)冯利军(1974-),男,河北涉县人,博士研究生,主要从事项目智能管理等研究;李书全,教授,主要从事项目管理、机器学习等方面的研究
更新日期/Last Update: 1900-01-01