[1]庄新鹏 赵建民 朱信忠.基于Multi-Agent的数据挖掘模型的研究[J].计算机技术与发展,2006,(07):129-131.
 ZHUANG Xin-peng,ZHAO Jian-min,ZHU Xin-zhong.Research of Data - Mining Model Based on Multi - Agent[J].,2006,(07):129-131.
点击复制

基于Multi-Agent的数据挖掘模型的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年07期
页码:
129-131
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research of Data - Mining Model Based on Multi - Agent
文章编号:
1673-629X(2006)07-0129-03
作者:
庄新鹏 赵建民 朱信忠
浙江师范大学信息科学与工程学院
Author(s):
ZHUANG Xin-peng ZHAO Jian-min ZHU Xin-zhong
School of Information Science and Engineering, Zhejiang Normal University
关键词:
数据挖掘数据库Multi—agent技术
Keywords:
data - mining database multi - agent technology
分类号:
TP311.13
文献标志码:
A
摘要:
数据挖掘是人们长期对数据库研究的结果,但是传统的数据挖掘存在低效性和非智能化等不足。随着具有自主性和社会性的智能计算实体Agent的出现和发展,文中将Multi-agent技术应用到数据挖掘中,并提出了基于Multi-agent智能化的数据挖掘模型,讨论了模型的运行过程。这一模型弥补了传统数据挖掘的缺陷和不足,而且在很大程度上提高了数据挖掘的智能性和高效性,减少了人工的参与
Abstract:
Data - mining is the result of the researches of database by people for a long time, but there are some inefficiencies and non - intelligence. With the performance and development of intelligent computing entity, agent, which has the capabilities of self- determination and socialization, this paper applies the multi- agent technology into data- mining, and puts forward an intelligent model based on multi - agent, and discusses the running process of this model. The model makes up the limitation and deficiencies; moreover, to a great extent it improves the capabilities of intelligence and efficiency, and reduces the participation by people

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(07):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(07):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(07):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(07):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(07):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(07):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(07):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(07):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(07):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(07):113.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(60473050);浙江省自然科学基金资助项目(ZD0108)庄新鹏(1982-),男,山东日照人,硕士研究生,研究方向为模式识别、数据挖掘和软件Agent 赵建民,硕士,教授,研究方向为模式识别与图像处理、网络安全与软件Agent
更新日期/Last Update: 1900-01-01