[1]陈玉婷 王斌 刘博 宋斌[] 李颉[].关联规则挖掘算法介绍[J].计算机技术与发展,2006,(05):21-25.
 CHEN Yu-ting,WANG Bin,LIU Bo,et al.Introduction of Mining Association Rules Algorithm[J].,2006,(05):21-25.
点击复制

关联规则挖掘算法介绍()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年05期
页码:
21-25
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Introduction of Mining Association Rules Algorithm
文章编号:
1673-629X(2006)05-0021-05
作者:
陈玉婷1 王斌1 刘博1 宋斌[13] 李颉[23]
[1]北京邮电大学电信工程学院[2]中国人民解放军国防大学研究生院[3]中国人民解放军61062部队
Author(s):
CHEN Yu-ting WANG Bin LIU Bo SONG Bin LI Jie
[1]Institute of Telecom Project,Beijing University of Posts and Telecommunications[2]Graduate School, National Defence University of China[3]Corps 61062, PLA
关键词:
数据挖掘关联规则频繁项集FP树
Keywords:
data mining association rules frequent item sets FP tree
分类号:
TP301.6
文献标志码:
A
摘要:
数据挖掘是一个多学科交叉融合而形成的新兴的学科,它利用各种分析工具在海量数据中发现模型和数据间的关系。而在大规模事务数据库中,挖掘关联规则是数据挖掘领域的一个非常重要的研究课题。文中介绍了关联规则挖掘的研究情况,描述了经典Apfiofi算法的实现,并对该算法进行了分析和评价,指出了其不足和原因。描述了FP树挖掘最大频繁项集的算法,通过实例对该算法进行了性能评估,并得到结论:数据库中潜在的最大频繁模式越多,运行时间越长
Abstract:
Data mining is an emerging subject that composed and amalgamated by multiple subjects. It is an analytic process designed to explore data in search of consistent patterns and/or systematic relationships between variables. Mining association rules in business transaction datahases is one of the important topic of research on data mining. This paper introduced the research complexion of the association rules mining algorithm, describes the classical Apfiori algorithm,analyses and evaluates it. The author emphasizes FP tree mining maximum frequent item sets algorithm specially. And evaluates performace of the algorithm through instance. At the end, the paper gives the conclusion:the more maximum frequent item pattern in the database, the longer run time is needed

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(05):120.
[2]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(05):235.
[3]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(05):114.
[4]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(05):229.
[5]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(05):93.
[6]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(05):109.
[7]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(05):113.
[8]孙名松 邸明星 王湛昱.多决策树算法在P2P网络流量检测中的应用[J].计算机技术与发展,2010,(06):126.
 SUN Ming-song,DI Ming-xing,WANG Zhan-yu.Application of Decision Tree Algorithm in Traffic Detection of P2P Network[J].,2010,(05):126.
[9]孟魁杰 董莹 赵宗涛.一种基于数据挖掘的无人飞行器故障分析方法[J].计算机技术与发展,2010,(06):225.
 MENG Kui-jie,DONG Ying,ZHAO Zong-tao.A Fault Analysis Method Based on Data Mining for Unmanned Aerial Vehicle[J].,2010,(05):225.
[10]陈伟.Apriori算法的优化方法[J].计算机技术与发展,2009,(06):80.
 CHEN Wei.Method of Apriori Algorithm Optimization[J].,2009,(05):80.
[11]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(05):143.
[12]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(05):105.
[13]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(05):84.
[14]文拯 梁建武 陈英.关联规则算法的研究[J].计算机技术与发展,2009,(05):56.
 WEN Zheng,LIANG Jian-wu,CHEN Ying.Research of Association Rules Algorithm[J].,2009,(05):56.
[15]王晓宇 秦锋 程泽凯 邹洪侠.关联规则挖掘技术的研究与应用[J].计算机技术与发展,2009,(05):220.
 WANG Xiao-yu,QIN Feng,CHENG Ze-kai,et al.Investigation and Application of Association Rules Mining[J].,2009,(05):220.
[16]王敏 刘希玉.Apriori算法在税务系统中的应用[J].计算机技术与发展,2009,(11):175.
 WANG Min,LIU Xi-yu.Application of Apriori Algorithm in Tax System[J].,2009,(05):175.
[17]董彩云 刘培华.数据挖掘技术在远程教育教学中的应用[J].计算机技术与发展,2009,(02):179.
 DONG Cai-yun,LIU Pei-hua.Application of Data Mining Technology in Instance Education[J].,2009,(05):179.
[18]刘军锋 李景文 陈大克 邓晓斌.一种改进的关联规则自顶向下算法[J].计算机技术与发展,2008,(02):136.
 LIU Jun-feng,LI Jing-wen,CHEN Da-ke,et al.An Improved Top to Bottom Algorithm for Mining Association Rules[J].,2008,(05):136.
[19]王伟 高亮 吴涛.基于遗传算法的长频繁项集挖掘方法[J].计算机技术与发展,2008,(04):19.
 WANG Wei,GAO Liang,WU Tao.A Method of Mining Long Frequent Itemset Based on Genetic Algorithm[J].,2008,(05):19.
[20]耿波 仲红 徐杰 闫娜娜.用关联分析法对负荷预测结果进行二次处理[J].计算机技术与发展,2008,(04):171.
 GENG Bo,ZHONG Hong,XU Jie,et al.Using Correlation Analysis to Treat Load Forecasting Results[J].,2008,(05):171.

备注/Memo

备注/Memo:
陈玉婷(1975-),女,江西人,硕士研究生,研究方向为计算机网络理论与技术;导师:宋俊德,教授,博士生导师,研究方向为移动互联网、个人通信、未来通信、CTI/CRM、VLSI、CAD
更新日期/Last Update: 1900-01-01