[1]郭剑 孙力娟.基于量子遗传算法的路由选择[J].计算机技术与发展,2006,(01):87-89.
 GUO Jian,SUN Li-juan.A Method for Routing Based on Quantum Genetic Algorithm[J].,2006,(01):87-89.
点击复制

基于量子遗传算法的路由选择()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年01期
页码:
87-89
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
A Method for Routing Based on Quantum Genetic Algorithm
文章编号:
1005-3751(2006)01-0087-03
作者:
郭剑 孙力娟
南京邮电学院计算机科学与技术系
Author(s):
GUO Jian SUN Li-juan
Computer ,Science and Technology Department of Nanjing University of Posts and Telecommunications
关键词:
遗传算法量子遗传算法路由选择网络优化
Keywords:
genetic algorithms quantum genetic algorithmrouting network optimization
分类号:
TP18
文献标志码:
A
摘要:
网络中存在许多设计和优化问题,其中相当一部分属于NP类型。传统的解法由于计算复杂度过大而失效。文中探讨了该类问题中路由选择问题的一种新的解决方法:量子遗传算法。就路由选择问题的数学模型进行了简单的介绍,并深入研究了量子遗传算法及其在路由选择优化问题中的应用,最后在计算机上进行了模拟分析实验。仿真实验的结果表明,量子遗传算法在性能上优于常规遗传算法。该算法搜索速度快、效率高,并且具有较强的实用性和鲁棒性
Abstract:
There exists many design and optimization problems in network, and parts of them belong to NP type. Traditional methods can' t resolve these problems because of large computation complexity. The muting problem is one of these problems. This paper discusses a new solution for the muting problem. In this paper, the mathematical model of the muting problem is introduced. Then the quantum genetic algorithm and its application in the muting problem are investigated deeply. At last, a computer simulation is carried out. As can be seen from the outcome of the simulation experiment, the quantum genetic algorithm gains an advantage over the conventional genetic algorithm. Its search speed is faster and its efficiency is higher. Furthermore, it has stronger practicality and robustness

相似文献/References:

[1]冯智明,苏一丹,覃华,等.基于遗传算法的聚类与协同过滤组合推荐算法[J].计算机技术与发展,2014,24(01):35.
 FENG Zhi-ming,SU Yi-dan,QIN Hua,et al.Recommendation Algorithm of Combining Clustering with Collaborative Filtering Based on Genetic Algorithm[J].,2014,24(01):35.
[2]余晓光 严洪森 殷乾坤.基于Flexsim的车间调度优化[J].计算机技术与发展,2010,(03):44.
 YU Xiao-guang,YAN Hong-sen,YIN Qian-kun.Workshops Scheduling Optimization Based on Flexsim Simulation[J].,2010,(01):44.
[3]贺计文 宋承祥 刘弘.基于遗传算法的八数码问题的设计及实现[J].计算机技术与发展,2010,(03):105.
 HE Ji-wen,SONG Cheng-xiang,LIU Hong.Design and Implementation of Eight Puzzle Problem Based on Genetic Algorithms[J].,2010,(01):105.
[4]沈珏萍 庄亚明.基于Agent的二级供应链企业自动谈判研究[J].计算机技术与发展,2010,(03):121.
 SHEN Jue-ping,ZHUANG Ya-ming.A Research for Company Automatic Negotiation in Secondary Supply Chain Based on Agent[J].,2010,(01):121.
[5]张磊 王晓军.基于遗传算法的业务流程测试[J].计算机技术与发展,2010,(03):155.
 ZHANG Lei,WANG Xiao-jun.Test of Business Process Based on Genetic Algorithm[J].,2010,(01):155.
[6]曹道友 程家兴.基于改进的选择算子和交叉算子的遗传算法[J].计算机技术与发展,2010,(02):44.
 CAO Dao-you,CHENG Jia-xing.A Genetic Algorithm Based on Modified Selection Operator and Crossover Operator[J].,2010,(01):44.
[7]范维博 周俊 许正良.应用遗传算法求解第一类装配线平衡问题[J].计算机技术与发展,2010,(02):194.
 FAN Wei-bo,ZHOU Jun,XU Zheng-liang.Appication of Genetic Algorithm to Assembly Line Balancing[J].,2010,(01):194.
[8]熊伟平 曾碧卿.几种仿生优化算法的比较研究[J].计算机技术与发展,2010,(03):9.
 XIONG Wei-ping,ZENG Bi-qing.Studies on Some Bionic Optimization Algorithms[J].,2010,(01):9.
[9]余晓光 严洪森.基于禁忌搜索遗传混合算法的装配线平衡[J].计算机技术与发展,2010,(05):5.
 YU Xiao-guang,YAN Hong-sen.Assembly Line Balancing Based on Tabu Search and Genetic Hybrid Algorithm[J].,2010,(01):5.
[10]黄永聪 张旭[] 吴义纯 吴琦 程家兴.改进的径向基函数网络的研究及应用[J].计算机技术与发展,2010,(05):158.
 HUANG Yong-cong,ZHANG Xu,WU Yi-chun,et al.Research and Application of Improved Genetic Algorithm-Based RBFANN[J].,2010,(01):158.

备注/Memo

备注/Memo:
郭剑(1978-),男,江苏南通人,硕士研究生,研究方向为计算机在通信中的应用;孙力娟,副教授,硕士生导师,研究方向为演化算法、计算机网络
更新日期/Last Update: 1900-01-01