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Abstract: In the sensor—based human action recognition research feature extraction by traditional machine learning methods needs lots of
work and considerable knowledge in the field of human activity while the existing neural networks” recognition accuracy is not high for
its simple structure and insufficient feature mining. For this we propose a new human action recognition approach based on synergistic
LSTM neural network. Firstly the structure of LSTM module is improved and the synergistic LSTM neural network is built; then six—ax—
is human action data are acquired by accelerometer and gyroscope; next the data will be preprocessed by sliding window and the Z-score
normalization; at last iterative training and testing are performed on the dataset using synergistic LSTM neural network convolutional
neural network and LSTM neural network respectively. The experiment shows that the proposed approach is the best with recognition ac—
curacy by 95.81% higher than 91.53% of CNN and 90.47% of LSTM which is proved to be effective for human action recognition.
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