相似文献/References:
[1]鲁 伟,宋荣方.基于模拟退火的多核多用户任务卸载调度[J].计算机技术与发展,2021,31(06):76.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 014]
LU Wei,SONG Rong-fang.Multi-core Multi-user Task Offloading Scheduling Based onSimulated Annealing Algorithm[J].,2021,31(05):76.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 014]
[2]胡 恒,金凤林 *,谢 钧,等.设备间任务依赖的最佳卸载决策和资源分配[J].计算机技术与发展,2022,32(08):82.[doi:10. 3969 / j. issn. 1673-629X. 2022. 08. 014]
HU Heng,JIN Feng-lin*,XIE Jun,et al.Optimal Offloading Decision and Resource Allocation of Inter-devices Task Dependency[J].,2022,32(05):82.[doi:10. 3969 / j. issn. 1673-629X. 2022. 08. 014]
[3]阳 柳,章立群,林晓勇.移动边缘计算中基于贡献度激励的端池化解决方案[J].计算机技术与发展,2024,34(03):83.[doi:10. 3969 / j. issn. 1673-629X. 2024. 03. 013]
YANG Liu,ZHANG Li-qun,LIN Xiao-yong.A Solution of Terminal Pooling Based on Contribution Emulated in Mobile Edge Computing[J].,2024,34(05):83.[doi:10. 3969 / j. issn. 1673-629X. 2024. 03. 013]
[4]龚亮亮,张 影,张俊尧,等.基于深度强化学习的任务卸载和资源分配优化[J].计算机技术与发展,2024,34(04):116.[doi:10. 3969 / j. issn. 1673-629X. 2024. 04. 018]
GONG Liang-liang,ZHANG Ying,ZHANG Jun-yao,et al.Joint Optimization of Task Offloading and Resource Allocation Based on Deep Reinforcement Learning[J].,2024,34(05):116.[doi:10. 3969 / j. issn. 1673-629X. 2024. 04. 018]
[5]夏元轶*,滕昌志,曾锃,等.电力物联网中基于聚类的任务卸载在线优化方法[J].计算机技术与发展,2024,34(06):66.[doi:10.20165/j.cnki.ISSN1673-629X.2024.0094]
XIA Yuan-yi*,TENG Chang-zhi,ZENG Zeng,et al.A Clustering-based Online Optimization Method for Task Offloading in Internet of Things for Electricity[J].,2024,34(05):66.[doi:10.20165/j.cnki.ISSN1673-629X.2024.0094]
[6]王宇轩,鲍海洲*,喻国荣,等.基于PER-MATD3的任务卸载和资源优化方法[J].计算机技术与发展,2024,34(12):57.[doi:10.20165/j.cnki.ISSN1673-629X.2024.0254]
WANG Yu-xuan,BAO Hai-zhou*,YU Guo-rong,et al.Task Offloading and Resource Optimization Method Based on PER-MATD3[J].,2024,34(05):57.[doi:10.20165/j.cnki.ISSN1673-629X.2024.0254]