[1]潘铭星,孙涵. 基于先验信息的交通标志检测[J].计算机技术与发展,2017,27(02):96-99.
 PAN Ming-xing,SUN Han. Traffic Sign Detection Based on Prior Information[J].,2017,27(02):96-99.
点击复制

 基于先验信息的交通标志检测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年02期
页码:
96-99
栏目:
应用开发研究
出版日期:
2017-02-10

文章信息/Info

Title:
 Traffic Sign Detection Based on Prior Information
文章编号:
1673-629X(2017)02-0096-04
作者:
 潘铭星孙涵
 南京航空航天大学 计算机科学与技术学院
Author(s):
 PAN Ming-xingSUN Han
关键词:
 交通标志遮挡颜色轮廓
Keywords:
 traffic signssheltercolorcontour
分类号:
TP391.4
文献标志码:
A
摘要:
 道路交通标志的自动识别通常应用于车辆的自动或半自动辅助驾驶系统中,为车辆驾驶提供对周围环境的理解.然而现有的交通标志检测与识别算法针对对象比较单一,多以某一类中的若干个标志为检测对象,当检测对象的样本数较多时,检测正确率明显下降.此外,该类方法虽然考虑了交通标志的颜色和形状等信息,但却忽略了颜色、几何形状与标志之间的确定性关系.提出了一种快速有效的交通标志检测算法,根据标志的形状及颜色等先验信息,建立一棵交通标志决策树,逐层筛选兴趣区域,并根据交通标志的轮廓信息将交通标志检测结果分为十个子类,通过子类结果及交通标志的先验信息进行交通标志检测.实验结果表明,当交通标志被遮挡时,该方法降低了交通标志检测的漏检率以及误检率.所提出的方法降低了TSR(Traffic Sign Recognition)系统的复杂性,提高了系统的实时性和鲁棒性.
Abstract:
 The automatic recognition of traffic signs can be applied to the automatic or semi-automatic auxiliary driving system to provide the information of surrounding road conditions.However the existing algorithms are relatively unitary for detection object and mostly only detect several signs in a certain class.With the increasing of traffic signs,the correct rate of detection is decreased obviously.In addition,these methods consider the color and shape,but ignore the deterministic relation between shape and geometric with traffic signs.A fast and efficient algorithm of traffic sign detection is proposed.According to the prior information of the shape and color of traffic signs,it establishes a decision tree of traffic signs,which can filter out interesting regions and divide traffic signs into 10 sub classes,detecting traffic signs by sub-classes results and the prior information of traffic sign.The experimental results show that when the traffic signs obscured,this method reduces the residual rate and false detection rate in traffic sign detection.The algorithm can reduce the complexity and improve the real-time performance and efficiency of the TSR system.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(02):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(02):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(02):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(02):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(02):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(02):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(02):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(02):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(02):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(02):47.
[11]张志佳,李文强,张丹,等. 基于颜色与形状特征的交通标志检测方法[J].计算机技术与发展,2015,25(07):174.
 ZHANG Zhi-jia,LI Wen-qiang,ZHANG Dan,et al. Traffic Sign Detection Method Based on Color and Shape Features[J].,2015,25(02):174.

更新日期/Last Update: 2017-05-11