[1]王硕果.基于平稳Bandelet的图像去噪[J].计算机技术与发展,2013,(04):29-32.
 WANG Shuo=guo.Image Denoising Based on Stationary Bandelet[J].,2013,(04):29-32.
点击复制

基于平稳Bandelet的图像去噪()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年04期
页码:
29-32
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Image Denoising Based on Stationary Bandelet
文章编号:
1673-629X(2013)04-0029-04
作者:
王硕果
中国空空导弹研究院
Author(s):
WANG Shuo=guo
关键词:
图像去噪小波Bandelet平移不变
Keywords:
image denoisingwaveletBandelettranslation invariant
文献标志码:
A
摘要:
为了在滤除噪声的同时尽可能地保持图像的边缘信息,文中提出平稳Bandelet这一概念,并将其应用到图像去噪中.标准Bandelet变换虽然可以充分利用图像自身的几何特征,但它和小波变换一样缺乏平移不变性,导致处理后的图像边缘处容易出现振荡,这影响了它的图像去噪性能.为此文中在Bandelet中引入了平稳小波变换的思想,构造出平稳Bandelet,并将其用于图像去噪.实验结果表明,平稳Bandelet保留了分解过程中对图像去噪非常有用的的冗余信息,这使其去噪性能优于标准Bandelet和小波
Abstract:
In order to achieve very good denoising as well as preserving image edge details,a novel Bandelet based on the stationary wavelet,which is called stationary Bandelet,is proposed and applied to image denoising in this paper. Standard Bandelet transform can make full use of the geometrical characters of image. But denoising with the standard Bandelet transform exhibits visual artifacts which have a bad influence on result image. It is due to the lack of translation invariance. Concept of stationary wavelet transform is presented to the standard Bandelet transform to solve the problem in the paper. Experiments show that the redundant information is reserved in the sta-tionary Bandelet transform,which is very useful in image denoising. So the denoising performance of stationary Bandelet is better than standard Bandelet and wavelet

相似文献/References:

[1]郑江云 江巨浪.基于信噪比的自适应双彩色图像水印算法[J].计算机技术与发展,2010,(02):160.
 ZHENG Jiang-yun,JIANG Ju-lang.An Algorithm of Adaptive Double Color Digital Image Watermarking Based on SNR[J].,2010,(04):160.
[2]黄伟 王书文.一种基于图像边缘检测的全变分的去噪方法[J].计算机技术与发展,2009,(02):24.
 HUANG Wei,WANG Shu-wen.Total Variation Image Denoising Based on Image Edge Detection[J].,2009,(04):24.
[3]周先国 李开宇.基于提升小波结合DCT变换的图像去噪研究[J].计算机技术与发展,2009,(02):62.
 ZHOU Xian-guo,LI Kai-yu.Image De - noising Research Based on Lifting Wavelet and Discrete Cosine Transform[J].,2009,(04):62.
[4]邢丹俊 王继成.基于提升小波的自适应阈值图像去噪[J].计算机技术与发展,2008,(02):42.
 XING Dan-jun,WPNG Ji-cheng.Adaptive Threshold Based on Lifting Wavelet Transform for Image Denoising[J].,2008,(04):42.
[5]于梅 殷兵 梁栋 王璐.基于边缘检测的Contourlet变换图像去噪[J].计算机技术与发展,2008,(06):104.
 YU Mei,YIN Bing,LIANG Dong,et al.Image Denoising with Contourlet Transform Based on Edge Detection[J].,2008,(04):104.
[6]林德贵 何建农 郑玉燕.基于分水岭的提升小波图像去噪[J].计算机技术与发展,2008,(08):29.
 LIN De-gui,HE Jian-nong,ZHENG Yu-yan.Lifting Wavelet Image De- Noising Based on Watershed[J].,2008,(04):29.
[7]李小牛 周鸣争 修宇 黄伟.一种改进的NAS-RIF图像盲复原算法[J].计算机技术与发展,2008,(08):88.
 LI Xiao-niu,ZHOU Ming-zheng,XIU Yu,et al.An Improved NAS- RIF Algorithm on Image Blind Restoration[J].,2008,(04):88.
[8]汪继文 林胜华 沈玉峰 邱剑锋.一种基于各向异性扩散的图像处理方法[J].计算机技术与发展,2008,(08):98.
 WANG Ji-wen,LIN Sheng-hua,SHEN Yu-feng,et al.An Approach for Image Restoration Based on Anisotropic Diffusion[J].,2008,(04):98.
[9]汝振 李昕 陈飞 杨李箭 李翔.一种基于HHT的语音增强算法研究与仿真[J].计算机技术与发展,2010,(08):116.
 RU Zhen,LI Xin,CHEN Fei,et al.Research and Simulation of Speech Enhancement Algorithm Based on HHT[J].,2010,(04):116.
[10]颜景斌 伊戈尔·艾杜阿尔达维奇.基于连续小波和支持向量机分类音乐类型[J].计算机技术与发展,2008,(12):19.
 YAN Jing-bin,IGOR. Kheidorov.Musical Genre Classification Based on Continuous Wavelet and Support Vector Machines[J].,2008,(04):19.

更新日期/Last Update: 1900-01-01