[1]李 林,俞 璐,韩昌芝,等.多源域适应方法综述[J].计算机技术与发展,2024,34(03):1-8.[doi:10. 3969 / j. issn. 1673-629X. 2024. 03. 001]
 LI Lin,YU Lu,HAN Chang-zhi,et al.A Review of Multi-source Domain Adaptation[J].,2024,34(03):1-8.[doi:10. 3969 / j. issn. 1673-629X. 2024. 03. 001]
点击复制

多源域适应方法综述()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
34
期数:
2024年03期
页码:
1-8
栏目:
综述
出版日期:
2024-03-10

文章信息/Info

Title:
A Review of Multi-source Domain Adaptation
文章编号:
1673-629X(2024)03-0001-08
作者:
李 林1 俞 璐1 韩昌芝1 乔平娟2
1. 陆军工程大学 通信工程学院,江苏 南京 210007;
2. 陆军工程大学 指挥控制工程学院,江苏 南京 210007
Author(s):
LI Lin1 YU Lu1 HAN Chang-zhi1 QIAO Ping-juan2
1. Institute of Communication Engineering,Army Engineering University of PLA,Nanjing 210007,China;
2. Institute of Command and Control Engineering,Army Engineering University of PLA,Nanjing 210007,China
关键词:
迁移学习域适应多源域适应深度神经网络深度学习
Keywords:
transfer learningdomain adaptationmulti-source domain adaptationdeep neural networkdeep learning
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2024. 03. 001
摘要:
域适应是解决源域样本和目标域样本不满足独立同分布问题的迁移学习范式,是当下研究的重点方法。 然而实际情况下获取源域样本的渠道和方法并不唯一,这会导致源域中存在多种不同分布的样本。 多源域适应方法是解决源域样本分布多样性问题的有效途径,其主要研究各源域分布间的关系和与目标域分布对齐的策略,进一步减轻各域之间的域偏移,具有实用意义和挑战价值。 随着深度学习技术的不断进步,多源域适应方法主要使用深度神经网络提取各域的域不变特征作为分布对齐的依据,结合使用度量准则衡量分布差异或者利用对抗思想对齐域间分布。 经过理论证明和实验验证,多源域适应方法训练的模型比单源域方法训练的模型具有更好的泛化性能,更符合现实需求。 通过介绍多源域适应的研究现状和相关概念,对现有算法进行总结和综述,按照迁移方式不同对多源域适应方法进行分类,进一步分析多源域适应方法性能的实验结果,阐述其存在的不足和缺点,并对多源域适应领域的发展和趋势进行预测。
Abstract:
Domain adaptation is a current research paradigm in transfer learning that solves the problem of non-i. i. d. ( independent andidentically distributed) source and target domain samples. However,in practice,there are multiple channels and methods for obtaining thesource domain samples,which can lead to various distributions within the source domain. Multi-source domain adaptation is an effectiveapproach to address the problem of diversity of source domain sample distributions. It mainly studies the relationships among differentsource domain distributions and the alignment strategies with the target domain distribution,further reducing the domain shift between domains. This has practical significance and challenging values. With the continuous advancement of deep learning technology,multi -source domain adaptation methods mainly use deep neural networks?
to extract domain-invariant features from each domain as the basisfor distribution alignment. These methods combine the use of metric criteria to measure distribution differences or use adversarial ideas toalign domain distributions. Through theoretical proof and experimental verification,models trained by multi - source domain adaptationmethods have better generalization performance than that of single-source domain methods and are more in line with real-world needs.We summarize and review existing algorithms for multi-source domain adaptation by introducing the research status and related conceptsof multi-source domain adaptation. The methods are classified according to different transfer modes,and the experimental results of theirperformance are further analyzed. The shortcomings and deficiencies of these methods are also discussed,and predictions are made on thedevelopment and trends in the field of multi-source domain adaptation.

相似文献/References:

[1]李 勇,刘战东,张海军.跨项目软件缺陷预测方法研究综述[J].计算机技术与发展,2020,30(03):98.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 019]
 LI Yong,LIU Zhan-dong,ZHANG Hai-jun.Review on Cross-project Software Defects Prediction Methods[J].,2020,30(03):98.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 019]
[2]武苏雯,赵慧杰,刘 鑫,等.基于迁移学习的图像分类在诗词中的应用研究[J].计算机技术与发展,2021,31(07):215.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 036]
 WU Su-wen,ZHAO Hui-jie,LIU Xin,et al.Research on Application of Image Classification Based onTransfer Learning in Poetry[J].,2021,31(03):215.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 036]
[3]娄丰鹏,吴迪,荆晓远,等.增加度量元的迁移学习跨项目软件缺陷预测[J].计算机技术与发展,2018,28(07):103.[doi:10.3969/ j. issn.1673-629X.2018.07.022]
 LOU Feng-peng,WU Di,JING Xiao-yuan,et al.Cross-project Software Defect Prediction Based on Transfer Learning with Metrics[J].,2018,28(03):103.[doi:10.3969/ j. issn.1673-629X.2018.07.022]
[4]刘宇廷,倪颖杰.融合知识迁移学习的微博社团检测模型构建[J].计算机技术与发展,2018,28(09):11.[doi:10.3969/j.issn.1673-629X.2018.09.003]
 LIU Yu-ting,NI Ying-jie.Construction of Weibo Community Detection Model with Knowledge Transfer Learning[J].,2018,28(03):11.[doi:10.3969/j.issn.1673-629X.2018.09.003]
[5]王泽泓,刘厚泉.基于迁移学习与自适应特征融合的建筑物识别[J].计算机技术与发展,2019,29(12):40.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 007]
 WANG Ze-hong,LIU Hou-quan.Building Recognition Based on Transfer Learning and Adaptive Feature Fusion[J].,2019,29(03):40.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 007]
[6]王 翎,孙 涵.基于域适应的多场景车辆检测[J].计算机技术与发展,2019,29(12):158.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 028]
 WANG Ling,SUN Han.Vehicle Detection in Different Scenes Based on Domain Adaptation[J].,2019,29(03):158.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 028]
[7]易 未,郑沫利,赵艳轲,等.基于小样本 SVR 的迁移学习及其应用[J].计算机技术与发展,2020,30(02):47.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 010]
 YI Wei,ZHENG Mo-li,ZHAO Yan-ke,et al.Transfer Learning Based on Support Vector Regression Model for Small Sample Data and Its Applications[J].,2020,30(03):47.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 010]
[8]王新美,丁爱玲,雷梦宁,等.基于 CNN 和 SVM 融合的交通标志识别[J].计算机技术与发展,2020,30(06):7.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 002]
 WANG Xin-mei,DING Ai-ling,LEI Meng-ning,et al.Traffic Sign Recognition Based on Combination of CNN and SVM[J].,2020,30(03):7.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 002]
[9]龚 安,井晓萌.多卷积神经网络模型融合的农作物病害图像识别[J].计算机技术与发展,2020,30(08):134.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 023]
 GONG An,JING Xiao-meng.Image Recognition of Crop Diseases Based on Multi-convolution Neural Network Model Ensemble[J].,2020,30(03):134.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 023]
[10]龚 安,郭文婷.基于卷积神经网络的皮肤癌识别方法[J].计算机技术与发展,2020,30(10):167.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 030]
 GONG An,GUO Wen-ting.Skin Cancer Image Classification Method Based on Convolutional Neural Network[J].,2020,30(03):167.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 030]
[11]翟利志,任一夫,白 洁,等.基于传递式领域自适应的异构样本增强方法[J].计算机技术与发展,2024,34(01):17.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 003]
 ZHAI Li-zhi,REN Yi-fu,BAI Jie,et al.Heterogeneous Sample Enhancement Based on Transitive Domain Adaptation[J].,2024,34(03):17.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 003]

更新日期/Last Update: 2024-03-10