[1]王 斌,李 峰,杨慧婷,等.Android 应用程序漏洞检测方法和工具新进展[J].计算机技术与发展,2024,34(02):9-16.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 002]
 WANG Bin,LI Feng,YANG Hui-ting,et al.Recent Progress on Android Application Vulnerability Detection Methods and Tools[J].,2024,34(02):9-16.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 002]
点击复制

Android 应用程序漏洞检测方法和工具新进展()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
34
期数:
2024年02期
页码:
9-16
栏目:
综述
出版日期:
2024-02-10

文章信息/Info

Title:
Recent Progress on Android Application Vulnerability Detection Methods and Tools
文章编号:
1673-629X(2024)02-0009-08
作者:
王 斌李 峰杨慧婷樊树铭
国网新疆电力有限公司电力科学研究院,新疆 乌鲁木齐 830011
Author(s):
WANG BinLI FengYANG Hui-tingFAN Shu-ming
State Grid Xinjiang Electric Power Co. ,Ltd. Electric Power Research Institute,Urumqi 830011,China
关键词:
数据安全移动设备安全Android 应用程序漏洞检测机器学习深度学习
Keywords:
data securitymobile securityAndroid applicationvulnerability detectionmachine learningdeep learning
分类号:
TP309. 1
DOI:
10. 3969 / j. issn. 1673-629X. 2024. 02. 002
摘要:
Android 是移动设备和智能设备的主流操作系统,其安全性受到广泛关注。 然而 Android 应用程序普遍存在漏洞或恶意代码,许多学者对 Andriod 应用程序的漏洞检测方法开展了研究。 由于 Android 系统发展迅速,且近年来机器学习和深度学习方法成功应用于漏洞检测,该文对 2016 年至 2022 年间发表的 Android 应用程序漏洞检测的最新成果进行了总结,阐述了涉及的源代码特征提取方法、基于机器学习 / 深度学习的检测方法、传统检测方法等,并给出了详细对比表。 研究表明,仍缺乏 Android 专用的源代码漏洞数据集和工具等,以便对基于机器学习 / 深度学习的 Android 漏洞检测方法提供更有效的支撑。
Abstract:
Android is the mainstream operating system for mobile devices and intelligent devices, whose security has been widelyconcerned. Unfortunately,vulnerabilities or malicious code are often concealed in Android applications. Many scholars have studied thevulnerability detection methods for Android applications. Due to the rapid development of Android system and?
the successful applicationof machine learning and deep learning methods in vulnerability detection in recent years,we survey the latest achievements of Android application vulnerability detection published from 2016 to 2022, describe the involved source code feature extraction methods, detectionmethods based on machine learning / deep learning,traditional detection methods,and propose detailed comparison lists. The review showsthat source code vulnerability data sets and tools dedicated to Android is still needed, which can provide more effective support forAndroid vulnerability detection methods based on machine learning / deep learning.

相似文献/References:

[1]曾蜀芳 郭兵 沈艳.μC/OS-Ⅱ中消息队列通信的数据安全问题[J].计算机技术与发展,2009,(08):151.
 ZENG Shu-fang,GUO Bing,SHEN Yan.Data Security of Message Queue Communication in μC/OS-Ⅱ[J].,2009,(02):151.
[2]罗恒洋.IPSec在MPLS VPN中的应用[J].计算机技术与发展,2009,(03):168.
 LUO Heng-yang.Application of IPSec in MPLS VPN[J].,2009,(02):168.
[3]汤亚玲 秦峰 崔志明..NET平台下库存管理系统的设计模式研究[J].计算机技术与发展,2006,(12):133.
 TANG Ya-ling,QIN Feng,CUI Zhi-ming.Research on Design Pattern of Inventory Management Based on. NET Platform[J].,2006,(02):133.
[4]秦军,邓谦,张建平.HDFS的多安全级数据销毁机制设计[J].计算机技术与发展,2013,(03):129.
 QIN Jun,DENG Qian,ZHANG Jian-ping.Design of Multi-grade Safety Data Destruction Mechanism of HDFS[J].,2013,(02):129.
[5]杨明慧[] [],刘孟占[],邹翔[][],等. 德国eID机制对我国网络身份管理的启示[J].计算机技术与发展,2014,24(07):157.
 YANG Ming-hui[][],LIU Meng-zhan[] ZOU Xiang[][],WANG Zhi-peng[][],et al. Reference of Germany eID Mechanism for China Network Identity Management[J].,2014,24(02):157.
[6]锡晓峰,曹宝香. 一种适用于云计算环境的改进全同态加密方案[J].计算机技术与发展,2015,25(02):144.
 XI Xiao-feng,CAO Bao-xiang. An Improved Fully Homomorphic Encryption Scheme under Conditions of Cloud Computing[J].,2015,25(02):144.
[7]庞立君,廖春伟,黄波,等. 基于GID的车联网数据安全方案[J].计算机技术与发展,2016,26(04):101.
 PANG Li-jun,LIAO Chun-wei,HUANG Bo,et al. Data Security Scheme of IOV Based on GID[J].,2016,26(02):101.
[8]王强[],宗平[]. 云存储中基于可信第三方的安全可问责方案[J].计算机技术与发展,2017,27(10):111.
 WANG Qiang[],ZONG Ping[].A Data Security Accountability Scheme with Trusted Third Party in Cloud Storage[J].,2017,27(02):111.
[9]刘晨光,王新安,雍珊珊,等.AETA多分量地震监测系统的数据存储与安全系统[J].计算机技术与发展,2018,28(12):7.[doi:10.3969/j. issn.1673-629X.2018.12.002]
 LIU Chenguang,WANG Xinan,YONG Shanshan,et al.Data Storage and Security System for AETA Multi-component Seismic Monitoring System[J].,2018,28(02):7.[doi:10.3969/j. issn.1673-629X.2018.12.002]
[10]吴超,何利文,唐澄澄,等.基于多目标遗传算法的云数据安全存储方法[J].计算机技术与发展,2018,28(11):135.[doi:10.3969/ j. issn.1673-629X.2018.11.030]
 WU Chao,HE Li-wen,TANG Cheng-cheng,et al.Cloud Data Safe Placement Method Based on Multi-objective Genetic Algorithm[J].,2018,28(02):135.[doi:10.3969/ j. issn.1673-629X.2018.11.030]

更新日期/Last Update: 2024-02-10