[1]刘学彬,梁智飞,朱卫平,等.基于 EEMD 的固定分段数分段线性表示方法[J].计算机技术与发展,2023,33(11):202-208.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 030]
 LIU Xue-bin,LIANG Zhi-fei,ZHU Wei-ping,et al.Piecewise Linear Representation Algorithm of Fixed Section Number Based on EEMD[J].,2023,33(11):202-208.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 030]
点击复制

基于 EEMD 的固定分段数分段线性表示方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年11期
页码:
202-208
栏目:
新型计算应用系统
出版日期:
2023-11-10

文章信息/Info

Title:
Piecewise Linear Representation Algorithm of Fixed Section Number Based on EEMD
文章编号:
1673-629X(2023)11-0202-07
作者:
刘学彬1 梁智飞2 朱卫平2 祝 凯1*
1. 青岛理工大学 信息与控制工程学院,山东 青岛 266000;
2. 中石油煤层气有限责任公司,北京 102200
Author(s):
LIU Xue-bin1 LIANG Zhi-fei2 ZHU Wei-ping2 ZHU Kai1*
1. School of Information and Control Engineering,Qingdao University of Technology,Qingdao 266000,China;
2. Petrochina Coalbed Methane Company Limited,Beijing 102200,China
关键词:
时间序列分段线性表示集合经验模态分解模态重构符号化自底向上
Keywords:
time series piecewise linear representation ensemble empirical mode decomposition mode reconstruction symbolizationbottom-up
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 11. 030
摘要:
针对采用单一启发式规则的分段线性表示方法存在局部最优化和无法准确预计分段数目的问题,提出了基于集合经验模态分解( EEMD)的固定分段数分段线性表示方法。 该方法通
过将集合经验模态分解和重构思想引入分段线性表示方法研究中,同时将自底向上算法的拟合误差阈值改进为分段数阈值来解决上述两个问题。 首先,通过模态重构思想过滤掉细节信息,提取到全局性分段点;然后,根据各初始分段子序列的波动程度,确定子序列段内分段点数量分布;最后,采用基于分段数阈值的自底向上方法将子序列合并到要求的分段数。 该方法不仅继承了自底向上方法拟合误差小的优点,同时克服了局部最优化以及不能预计分段数的缺点。 通过仿真实验证明了该方法克服了局部性的缺点,并有效减弱了噪声的干扰。 相比现有方法,在压缩率相同的情况下,该方法的拟合误差更小。 最终,在压裂施工时序数据趋势提取的应用中也验证了其有效性。
Abstract:
Aiming at the problems of local optimization and inability to accurately predict the number of segments in the piecewise linearrepresentation method using a single heuristic rule,
a piecewise linear representation method with a fixed number of segments based on Ensemble Empirical Mode Decomposition ( EEMD ) was proposed. This method introduces the idea of ensemble empirical modedecomposition and reconstruction into the research of piecewise linear representation method,and at the same time improves the fittingerror threshold of the bottom-up algorithm to the threshold of piecewise number to solve the above two problems. Firstly,the detail information is filtered out by the idea of modal reconstruction,and the global segmentation point is extracted. Then,the distribution of thenumber of segmentation points in the subsequence is determined according to the fluctuation degree of each initial segmentationsubsequence. Finally,a bottom - up method based on the number of segments threshold is used to merge the subsequences into therequired number of segments. This method not only inherits the advantages of small fitting error of the bottom - up method,but alsoovercomes the shortcomings of local optimization and unpredictable number of segments. The simulation experiment proves that theproposed method overcomes the shortcoming of locality and effectively weakens the interference of noise. Compared with existingmethods,the fitting error of the proposed method is smaller when the compression rate is the same. Finally, its effectiveness is alsoverified in the application of time series data trend extraction of fracturing construction.

相似文献/References:

[1]赵伟 梁循.互联网金融信息量与收益率波动关联研究[J].计算机技术与发展,2009,(12):1.
 ZHAO Wei,LIANG Xun.Research on Relationship Between Internet Financial Information and Fluctuation of Price - Earnings[J].,2009,(11):1.
[2]张虹 赵兵 钟华.基于小波多尺度的网络论坛话题热度趋势预测[J].计算机技术与发展,2009,(04):76.
 ZHANG Hong,ZHAO Bing,ZHONG Hua.Hot Trend Prediction of Network Forum Topic Based on Wavelet Multi - Resolution Analysis[J].,2009,(11):76.
[3]常毅 王加阳.时态信息系统转换方法研究[J].计算机技术与发展,2008,(07):15.
 CHANG Yi,WANG Jia-yang.Research on Method of Translating TIS to IS[J].,2008,(11):15.
[4]施尧 赵勇 杨雪洁 赵妹 张燕平 关有训 王克强.基于覆盖算法的大气质量预测[J].计算机技术与发展,2008,(07):190.
 SHI Yao,ZHAO Yong,YANG Xue-jie,et al.Application of Covering Algorithm to Prediction of Air Quality[J].,2008,(11):190.
[5]何星星 孙德山.模糊神经网络与SARIMA结合的时间序列预测模型[J].计算机技术与发展,2008,(08):61.
 HE Xing-xing,SUN De-shan.A Time Series Forecasting Model Using a Hybrid Fuzzy Neural Network and SARIMA[J].,2008,(11):61.
[6]兰妥 江弋 刘光生.基于Sas的时间序列缺失值处理方法比较[J].计算机技术与发展,2008,(10):43.
 LAN Tuo,JIANG Yi,LIU Guang-sheng.Comparison of Methods on Time Series' Missing Value Based on Sas[J].,2008,(11):43.
[7]查春生 倪志伟 倪丽萍 公维峰.基于相空间重构的股价时间序列相关性分析[J].计算机技术与发展,2010,(08):17.
 ZHA Chun-sheng,NI Zhi-wei,NI Li-ping,et al.Correlations Analysis Between Stock Index Time Serials Based on Reconstructed Phase Space[J].,2010,(11):17.
[8]贾瑞玉 王亮 王会颖.二维CVVT方法在时间序列分析中的应用研究[J].计算机技术与发展,2007,(05):160.
 JIA Rui-yu,WANG Liang,WANG Hui-ying.Research for Applications of 2D - CWT Approach in Time Series Analysis[J].,2007,(11):160.
[9]张诚 郑诚.基于时间的模糊关联规则挖掘[J].计算机技术与发展,2007,(07):60.
 ZHANG Cheng,ZHENG Cheng.Fuzzy Association Rules Mining over Time[J].,2007,(11):60.
[10]胡蓉.多输出支持向量回归及其在股指预测中的应用[J].计算机技术与发展,2007,(10):226.
 HE Rong.Application of Multi - Output Support Vector Regression in Stock Market Index Forecasting[J].,2007,(11):226.
[11]李云霞,姚建国,万定生,等.一种水文时间序列异常模式检测方法研究[J].计算机技术与发展,2019,29(07):159.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 032]
 LI Yun-xia,YAO Jian-guo,WAN Ding-sheng,et al.An Anomaly Pattern Detection Method for Hydrological Time Series[J].,2019,29(11):159.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 032]

更新日期/Last Update: 2023-11-10