相似文献/References:
[1]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(10):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[2]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(10):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[3]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(10):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[4]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(10):19.
[5]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(10):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[6]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(10):1.
[7]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(10):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[8]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(10):1.
[9]李全兵,文 钊*,田艳梅*,等.基于 WGAN 的音频关键词识别研究[J].计算机技术与发展,2021,31(08):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
LI Quan-bing,WEN Zhao *,TIAN Yan-mei *,et al.Research on Audio Keywords Recognition Based on WassersteinGenerative Adversarial Network[J].,2021,31(10):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
[10]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(10):7.
[11]宋 宇,王小瑀,梁 超,等.基于多级特征图联合上采样的实时语义分割[J].计算机技术与发展,2022,32(02):82.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 013]
SONG Yu,WANG Xiao-yu,LIANG Chao,et al.Real-time Semantic Segmentation Based on Multi-scale Feature Map Joint Pyramid Upsamping[J].,2022,32(10):82.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 013]
[12]李松宇.基于 HED—UNet 遥感图像建筑物语义分割[J].计算机技术与发展,2022,32(S2):58.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 010]
LI Song-yu.Semantic Segmentation of Buildings in Remote Sensing Images Based on HED-UNet[J].,2022,32(10):58.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 010]
[13]陈世婕,王卫星*,彭 莉.基于多尺度网络的苗绣绣片纹样分割算法研究[J].计算机技术与发展,2023,33(11):149.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 022]
CHEN Shi-jie,WANG Wei-xing*,PENG Li.Research on Miao Embroidery Pattern Segmentation Algorithm Based on Multi-scale Network[J].,2023,33(10):149.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 022]
[14]张 婧,张 策*,张 茹,等.图像分割述评:基本概貌、典型算法及比较分析[J].计算机技术与发展,2024,34(01):1.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 001]
ZHANG Jing,ZHANG Ce*,ZHANG Ru,et al.Review of Image Segmentation:Basic Overview,Typical Algorithms and Comparative Analysis[J].,2024,34(10):1.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 001]