[1]杜睿山,宋健辉,孟令东.基于注意力机制的岩石铸体薄片轻量化分割[J].计算机技术与发展,2023,33(10):128-134.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 020]
 DU Rui-shan,SONG Jian-hui,MENG Ling-dong.Lightweight Segmentation of Rock Casting Sheet Based on Attention Mechanism[J].,2023,33(10):128-134.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 020]
点击复制

基于注意力机制的岩石铸体薄片轻量化分割()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年10期
页码:
128-134
栏目:
人工智能
出版日期:
2023-10-10

文章信息/Info

Title:
Lightweight Segmentation of Rock Casting Sheet Based on Attention Mechanism
文章编号:
1673-629X(2023)10-0128-07
作者:
杜睿山12 宋健辉1 孟令东2
1. 东北石油大学 计算机与信息技术学院,黑龙江 大庆 163318;
2. 油气藏及地下储库完整性评价黑龙江省重点实验室,黑龙江 大庆 163318
Author(s):
DU Rui-shan12 SONG Jian-hui1 MENG Ling-dong2
1. School of Computer and Information Technology,Northeast Petroleum University,Daqing 163318,China;
2. Key Laboratory of Oil and Gas Reservoir and Underground Gas Storage Integrity Evaluation,Daqing 163318,China
关键词:
深度学习语义分割岩石铸体薄片轻量化网络注意力机制
Keywords:
deep learningsemantic segmentationrock casting sheetlightweight networkattention mechanism
分类号:
TP391. 1
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 10. 020
摘要:
储集层岩石铸体薄片的微观结构特征对研究储层的储渗能力、流体分布、采收率的大小、水驱油效率等均具重要作用。 岩石铸体薄片的分割是研究岩石微观结构特征的前提,目前传统方法是通过染色剂对孔隙区域染色,然后用阈值或连通域等方法进行分割,这种方法准确率低且成本昂贵。 基于深度学习的语义分割网络在不同的分割场景下都取得了很大进展。 该文采用 DeepLabV3+网络作为模型框架,首先,针对语义分割网络参数量多且在恢复空间细节方面表现欠佳等问题,引入了轻量化特征提取网络,优化原模型 Xception 特征提取网络的参数量;其次,优化残差结构,减少参数计算量,降低模型训练耗时;最后,为了弥补参数优化带来的精度损失,在模型的高层特征图提取部分引入注意力机制 CBAM模块,以提高模型准确率。 在岩石铸体薄片数据集上,此方法与原模型相比准确率提高了 3. 7 百分点,识别帧率提高了106 百分点。
Abstract:
The microstructure characteristics of rock casting sheet of reservoir rocks play an important role in studying the reservoir permeability,fluid distribution, oil recovery?
and water displacement efficiency. The segmentation of rock casting sheet is the premise ofstudying the characteristics of rock microstructure. At present, the traditional method is to dye the pore area with dye, and then usethreshold or connected domain methods to segment. This method has low accuracy and high cost. The semantic segmentation networkbased on deep learning has made great progress in different segmentation scenarios. We use DeepLabV3 + network as the modelframework. Firstly,aiming at the problems of large number of parameters in the semantic segmentation network and poor performance inrestoring spatial details,a lightweight feature extraction network is introduced to optimize the parameters of the original model’ s Xceptionfeature extraction network. Secondly,the residual structure is optimized to reduce the amount of parameter calculation and model trainingtime. Finally,in order to compensate for the accuracy loss caused by parameter optimization,the attention mechanism CBAM module isintroduced in the high-level feature map extraction part of the model to improve the accuracy of the model. Compared with the originalmodel,the accuracy of the proposed method is improved by 3. 7 percentage points and the recognition frame rate is improved by 106 percentage points on the thin section data set of rock casting sheets.

相似文献/References:

[1]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(10):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[2]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(10):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[3]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(10):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[4]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(10):19.
[5]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(10):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[6]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(10):1.
[7]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(10):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[8]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(10):1.
[9]李全兵,文 钊*,田艳梅*,等.基于 WGAN 的音频关键词识别研究[J].计算机技术与发展,2021,31(08):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
 LI Quan-bing,WEN Zhao *,TIAN Yan-mei *,et al.Research on Audio Keywords Recognition Based on WassersteinGenerative Adversarial Network[J].,2021,31(10):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
[10]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(10):7.
[11]宋 宇,王小瑀,梁 超,等.基于多级特征图联合上采样的实时语义分割[J].计算机技术与发展,2022,32(02):82.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 013]
 SONG Yu,WANG Xiao-yu,LIANG Chao,et al.Real-time Semantic Segmentation Based on Multi-scale Feature Map Joint Pyramid Upsamping[J].,2022,32(10):82.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 013]
[12]李松宇.基于 HED—UNet 遥感图像建筑物语义分割[J].计算机技术与发展,2022,32(S2):58.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 010]
 LI Song-yu.Semantic Segmentation of Buildings in Remote Sensing Images Based on HED-UNet[J].,2022,32(10):58.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 010]
[13]陈世婕,王卫星*,彭 莉.基于多尺度网络的苗绣绣片纹样分割算法研究[J].计算机技术与发展,2023,33(11):149.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 022]
 CHEN Shi-jie,WANG Wei-xing*,PENG Li.Research on Miao Embroidery Pattern Segmentation Algorithm Based on Multi-scale Network[J].,2023,33(10):149.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 022]
[14]张 婧,张 策*,张 茹,等.图像分割述评:基本概貌、典型算法及比较分析[J].计算机技术与发展,2024,34(01):1.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 001]
 ZHANG Jing,ZHANG Ce*,ZHANG Ru,et al.Review of Image Segmentation:Basic Overview,Typical Algorithms and Comparative Analysis[J].,2024,34(10):1.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 001]

更新日期/Last Update: 2023-10-10