相似文献/References:
[1]沈大港,范鹏飞,周慧娟,等.面向车联网基于边缘计算的点对点信息传输[J].计算机技术与发展,2021,31(08):139.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 024]
SHEN Da-gang,FAN Peng-fei,ZHOU Hui-juan,et al.Point-to-point Information Communication Based on Edge Computing for Internet of Vehicle[J].,2021,31(09):139.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 024]
[2]张云飞,高 岭,丁彩玲,等.边缘计算环境下改进蚁群算法的任务调度算法[J].计算机技术与发展,2021,31(09):86.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 015]
ZHANG Yun-fei,GAO Ling,DING Cai-ling,et al.Improved Task Scheduling Algorithm of Ant Colony Algorithm in Edge Computing[J].,2021,31(09):86.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 015]
[3]王 闯,沈苏彬.一种基于多智能体的分布式深度神经网络算法[J].计算机技术与发展,2021,31(12):45.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 008]
WANG Chuang,SHEN Su-bin.A Distributed Deep Neural Network Algorithm Based on Multi-agent[J].,2021,31(09):45.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 008]
[4]舒志鸿,沈苏彬.在不平衡数据中进行高效通信的联邦学习[J].计算机技术与发展,2021,31(12):33.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 006]
SHU Zhi-hong,SHEN Su-bin.Communication-efficient Federated Learning from Imbalanced Data[J].,2021,31(09):33.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 006]
[5]钟云峰,宋伟宁.基于云边协同多任务计算卸载策略[J].计算机技术与发展,2022,32(04):69.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 012]
ZHONG Yun-feng,SONG Wei-ning.Multi-task Computation Offloading Strategy Based on Cloud-side Collaboration[J].,2022,32(09):69.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 012]
[6]赵尚维康,孙 君.工业物联网中基于 SMDP 的协同卸载方案[J].计算机技术与发展,2022,32(09):76.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 012]
ZHAO Shang-wei-kang,SUN Jun.Multi-MEC Collaborative Computing Unloading Scheme Based on SMDP in Industrial Internet of Things[J].,2022,32(09):76.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 012]
[7]林广栋,黄光红,陆俊峰.一款人工智能芯片上 FCOS 模型的应用研究[J].计算机技术与发展,2023,33(05):9.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 002]
LIN Guang-dong,HUANG Guang-hong,LU Jun-feng.Application of FCOS Model on an AI Chip[J].,2023,33(09):9.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 002]
[8]薛 锋,张雅文,陈思光.基于 D2D 协同的边缘计算迁移机制研究[J].计算机技术与发展,2023,33(06):117.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 018]
XUE Feng,ZHANG Ya-wen,CHEN Si-guang.Research on Edge Computing Offloading Mechanism Based on D2D Collaboration[J].,2023,33(09):117.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 018]
[9]杨晓雨,周彩凤*.基于联邦卷积神经网络的鱼类检测系统[J].计算机技术与发展,2023,33(09):155.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 023]
YANG Xiao-yu,ZHOU Cai-feng*.A Fish Classification System Based on Federal Convolution Neural Network[J].,2023,33(09):155.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 023]
[10]袁 媛,袁 松*.一种区块链支持的联邦学习认知模型[J].计算机技术与发展,2023,33(11):215.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 032]
YUAN Yuan,YUAN Song *.Federal Learning of Cognitive Model Supported by Blockchain[J].,2023,33(09):215.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 032]
[11]王志良,何 刚*,俞文心,等.边缘场景下动态联邦学习优化方法[J].计算机技术与发展,2024,34(02):98.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 015]
WANG Zhi-liang,HE Gang*,YU Wen-xin,et al.Dynamic Federated Learning Optimization Method in Edge Scenarios[J].,2024,34(09):98.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 015]