相似文献/References:
[1]舒志鸿,沈苏彬.在不平衡数据中进行高效通信的联邦学习[J].计算机技术与发展,2021,31(12):33.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 006]
SHU Zhi-hong,SHEN Su-bin.Communication-efficient Federated Learning from Imbalanced Data[J].,2021,31(09):33.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 006]
[2]张海超,赖金山,刘 东,等.边缘计算下的轻量级联邦学习隐私保护方案[J].计算机技术与发展,2023,33(09):161.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 024]
ZHANG Hai-chao,LAI Jin-shan,LIU Dong,et al.Lightweight Federated Learning Privacy Protection Scheme under Edge Computing[J].,2023,33(09):161.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 024]
[3]袁 媛,袁 松*.一种区块链支持的联邦学习认知模型[J].计算机技术与发展,2023,33(11):215.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 032]
YUAN Yuan,YUAN Song *.Federal Learning of Cognitive Model Supported by Blockchain[J].,2023,33(09):215.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 032]
[4]王志良,何 刚*,俞文心,等.边缘场景下动态联邦学习优化方法[J].计算机技术与发展,2024,34(02):98.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 015]
WANG Zhi-liang,HE Gang*,YU Wen-xin,et al.Dynamic Federated Learning Optimization Method in Edge Scenarios[J].,2024,34(09):98.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 015]