[1]吴培良,王天成,金鑫龙,等.家庭服务机器人领域知识图谱构建与应用[J].计算机技术与发展,2023,33(08):172-179.[doi:10. 3969 / j. issn. 1673-629X. 2023. 08. 025]
 WU Pei-liang,WANG Tian-cheng,JIN Xin-long,et al.Domain Knowledge Graph Construction and Application of Home Service Robot[J].,2023,33(08):172-179.[doi:10. 3969 / j. issn. 1673-629X. 2023. 08. 025]
点击复制

家庭服务机器人领域知识图谱构建与应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年08期
页码:
172-179
栏目:
新型计算应用系统
出版日期:
2023-08-10

文章信息/Info

Title:
Domain Knowledge Graph Construction and Application of Home Service Robot
文章编号:
1673-629X(2023)08-0172-08
作者:
吴培良12 王天成12 金鑫龙12 闫鹏宇3 张云川12 陈雯柏4 毛秉毅12 高国伟4
1. 燕山大学 信息科学与工程学院,河北 秦皇岛 066004;
2. 河北省计算机虚拟技术与系统集成重点实验室,河北 秦皇岛 066004;
3. 上海工业自动化仪表研究院有限公司,上海 200233;
4. 北京信息科技大学 自动化学院,北京 100192
Author(s):
WU Pei-liang12 WANG Tian-cheng12 JIN Xin-long12 YAN Peng-yu3 ZHANG Yun-chuan12 CHEN Wen-bai4 MAO Bing-yi12 GAO Guo-wei4
1. School of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,China;
2. Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province,Qinhuangdao 066004,China;
3. Shanghai Industrial Automation Instrument Research Institute,Shanghai 200233,China;
4. School of Automation,Beijing Information Science and Technology University,Beijing 100192,China
关键词:
家庭服务机器人服务策略语义信息知识图谱深度学习
Keywords:
home service robotservice policysemantic informationknowledge graphdeep learning
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 08. 025
摘要:
对于家庭服务机器人,能否准确快速地获取到家庭场景中实体的语义信息是决定其智能化水平的关键。 为了增强其语义信息获取能力与知识推理能力,针对家
庭场景提出了一种面向服务机器人的领域知识图谱自动化构建流程。 首先,利用词频-逆向文件频率算法(Term Frequency – Inverse Document Frequency,TF-IDF) 从文本信息中提取服务策略关键字,构建服务策略图谱;其次,通过预训练的场景分割模型( Scene Segmentation Model,SSM) 识别出场景内的实体;之后,根据当前场景的实体信息,运用场景分类模型(Scene Classification Model,SCM) 来预测房间类别,生成结构化数据;再次,根据结构化数据构建家庭实体图谱;最后,
将服务策略图谱与家庭实体图谱合并为家庭服务领域知识图谱,并将其存储到 neo4j 图数据库中。 实验结果表明,所提出的方法可以根据非结构化数据自动生成领域知识图谱,通过查询知识图谱,检索家庭服务所需的语义信息,可以帮助机器人生成适用于当前工作环境的服务策略,使其更加智能地完成服务任务,证明了方法的可行性。
Abstract:
For the home service robot,whether it can accurately and quickly obtain the semantic information of the entity in the homescene is the key to determine?
its intelligence level. In order to enhance its semantic information acquisition and knowledge reasoningability,we propose an automatic construction process of knowledge graph based on family scene. Firstly,TF-IDF algorithm is used toextract service policy keywords from text information and construct the service policy graph. Secondly, the pre - trained scenesegmentation model ( SSM) is used to identify the entities in the scene,and the scene classification model?
( SCM) is used to predict theroom category and generate structured data. Then, the family entity map is constructed according to the structured data.?
Finally, theservice policy graph and the family entity graph are merged into the family service knowledge graph and stored in the Neo4J graphdatabase.?
The experimental results show that the proposed method can automatically generate domain knowledge graph according to unstructured data. By querying the knowledge graph,the semantic information needed by service can be searched,and the service policysuitable for the current working environment can?
be generated by the robot,the robot can complete the service more intelligently,whichproves the effectiveness of the proposed method.

相似文献/References:

[1]李星 李龙澍.仿真家庭服务机器人行动序列规划研究[J].计算机技术与发展,2012,(10):62.
 LI Xing,LI Long-shu.Research on Simulation Home Service Robot Action Sequence Planning[J].,2012,(08):62.

更新日期/Last Update: 2023-08-10