[1]陈 刚.基于改进 GRU 的高速公路交通流量预测模型[J].计算机技术与发展,2023,33(07):208-214.[doi:10. 3969 / j. issn. 1673-629X. 2023. 07. 031]
 CHEN Gang.Highway Traffic Flow Prediction Model Based on Improved GRU[J].,2023,33(07):208-214.[doi:10. 3969 / j. issn. 1673-629X. 2023. 07. 031]
点击复制

基于改进 GRU 的高速公路交通流量预测模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年07期
页码:
208-214
栏目:
新型计算应用系统
出版日期:
2023-07-10

文章信息/Info

Title:
Highway Traffic Flow Prediction Model Based on Improved GRU
文章编号:
1673-629X(2023)07-0208-07
作者:
陈 刚
广西交通投资集团,广西 南宁 530022
Author(s):
CHEN Gang
Guangxi Communications Investment Group Corporation Ltd. ,Nanning 530022,China
关键词:
交通流量预测高速公路长短期记忆神经网络门控循环网络预测模型
Keywords:
traffic flow predictionhighwaylong short-term memory neural networkgated recurrent unitprediction mode
分类号:
TP183;U491
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 07. 031
摘要:
交通流量预测常用于改善交通阻塞控制,是构建智能交通系统的基本技术之一。 为了能够准确、高精度预测高速公路交通
流量,充分利用交通流量的随机性、非线性及周期性等特征,设计了基于改进门控循环网络高速公路交通流预测模型,采用平均绝对误差(MAE)等 3 项评估指标,依托广西高速公路的交通流量数据集和芬兰公共交通管理局某自动测量站(LAM) 收集的道路交通信息上进行实例应用,并与长短期记忆神经网络( LSTM) 和门控循环网络( GRU) 进行对比。以芬兰数据集为例分析,在三层神经网络结构上采用 adam 优化器的改进 GRU 模型预测精度更高,其 RMSE 值为 8. 672 9,MAE 值为 6. 199 1, MAPE 值为 24. 76% ;在广西数据集上可得到同样的结论,三项指标均优于 LSTM 和 GRU。 进一步验证了所提模型的准确性和稳定性,以及在高速公路流量预测方面的实用性。
Abstract:
Traffic flow prediction is often used to improve traffic congestion control and is one of the basic techniques for building intelligent transportation systems. In order to predict highway traffic flow accurately and with high precision,and make?
full use of thecharacteristics of randomness,nonlinearity and periodicity of traffic flow,we design a highway traffic flow prediction model based on animproved gated recurrent network. Three evaluation indexes including mean absolute?
error ( MAE ) are applied, and an exampleapplication is carried out on the traffic flow data set of Guangxi highway?
and the road traffic information collected by an automatic measurement station ( LAM) of the Finnish Public Transport Administration, and comparison is made with the long short-term memory neuralnetwork ( LSTM) and gated recurrent unit ( GRU) . Using the Finnish dataset as an example analysis,the improved GRU model withadam optimizer on the three-layer neural network structure has higher prediction accuracy with RMSE value of 8.672 9,MAE value of 6.1991,and MAPE value of 24. 76% . The same conclusion can be obtained on the Guangxi dataset, and all three indexes are better thanLSTM and GRU. It further illustrates the accuracy and stability of the model proposed,and its usefulness in highway traffic prediction.

相似文献/References:

[1]高俊 李长云 万灿军 文志华.高速公路联网拆账系统的设计与实现[J].计算机技术与发展,2009,(02):247.
 GAO Jun,LI Chang-yun,WAN Can-jun,et al.Design and Implementation of Toll Allocation for Expressway Network System[J].,2009,(07):247.
[2]黄春平 蒋珉 柴干.高速公路的匝道与可变限速联合模糊控制[J].计算机技术与发展,2010,(12):38.
 HUANG Chun-ping,JIANG Min,CHAI Gan.Fuzzy Control for Ramp Metering and Variable Speed Limitation of Freeway[J].,2010,(07):38.
[3]张春玲 蒋珉 柴干.基于MapX的高速公路动态拓扑结构的构建[J].计算机技术与发展,2010,(12):205.
 ZHANG Chun-ling,JIANG Min,CHAI Gan.Building of Dynamic Topological Construction on Expressway Based on MapX[J].,2010,(07):205.
[4]钱刚,蒋珉,柴干.高速公路事故影响范围的研究[J].计算机技术与发展,2014,24(06):83.
 QIAN Gang[],JIANG Min[],CHAI Gan[].Study on Expressway Traffic Accident Influence Scope[J].,2014,24(07):83.
[5]晏雨婵,武奇生,白璘,等.采用MPSO优化SVR的短时交通流预测方法[J].计算机技术与发展,2019,29(04):133.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 027]
 YAN Yu-chan,WU Qi-sheng,BAI Lin,et al.Short-term Traffic Flow Prediction Method of Optimized SVR Based on MPSO[J].,2019,29(07):133.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 027]
[6]马千惠,徐 扬,丁维龙,等.面向高速公路逃费车辆甄别的实时检测方法[J].计算机技术与发展,2019,29(07):184.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 037]
 MA Qian-hui,XU Yang,DING Wei-long,et al.Real-time Inspection Method for Monitoring Highway Fee Evasion Vehicles[J].,2019,29(07):184.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 037]
[7]时恒心,孟 强,刘梦依,等.基于物联网的高速公路主动发光诱导系统设计[J].计算机技术与发展,2020,30(04):115.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 022]
 SHI Heng-xin,MENG Qiang,LIU Meng-yi,et al.Design of Active Luminescence Induction System for Expressway Based on Internet of Things[J].,2020,30(07):115.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 022]

更新日期/Last Update: 2023-07-10