[1]曾凡锋,王 祺.融合自注意力和卷积的图像检索技术[J].计算机技术与发展,2023,33(07):34-40.[doi:10. 3969 / j. issn. 1673-629X. 2023. 07. 005]
 ZENG Fan-feng,WANG Qi.Image Retrieval Technology Combining Self-attention and Convolution[J].,2023,33(07):34-40.[doi:10. 3969 / j. issn. 1673-629X. 2023. 07. 005]
点击复制

融合自注意力和卷积的图像检索技术()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年07期
页码:
34-40
栏目:
媒体计算
出版日期:
2023-07-10

文章信息/Info

Title:
Image Retrieval Technology Combining Self-attention and Convolution
文章编号:
1673-629X(2023)07-0034-07
作者:
曾凡锋1 王 祺2
1. 北方工业大学,北京 100144;
2. 北方工业大学 信息学院,北京 100144
Author(s):
ZENG Fan-feng1 WANG Qi2
1. North China University of Technology,Beijing 100144,China;
2. School of Information Science and Technology,North China University of Technology,Beijing 100144,China
关键词:
图像检索自注意力卷积神经网络特征提取深度学习
Keywords:
image retrievalself-attentionconvolutional neural networksfeature extractiondeep learning
分类号:
TP391. 41
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 07. 005
摘要:
针对细粒度图像类别之间差异较小的问题,需要对不同区域进行特征提取,自注意力模型能够有效地获取全局特征,卷积神经网络有利于得到图像的局部细节特征。 为了实现高效的图像特征提取,提出一种融合自注意力和卷积的图像检索方法。  自注意力和卷积是特征提取的两种强有力的方法,将两者进行有效融合,以提取更鲁棒的特征。 该方法先通过卷积层提取图像局部特征,然后再输入到自注意力模型捕获全局信息,生成质量更高的图像特征用于图像检索。 为了使自注意力模型与卷积能够有效融合,对自注意力模型进行了改进,更好地将局部特征与全局表示进行融合,实现改善图像检索效果的目的。 在 CUB-200-2011 及 CARS196 图像检索数据集上的实验结果表明,所提方法可以有效地提高检索精度。
Abstract:
In view of the small difference between fine-grained image categories,feature extraction in different regions is needed. The self-attention model is effective in obtaining global features. Convolutional neural networks are beneficial in obtaining local detailed featuresof images. In order to achieve efficient image feature extraction,an efficient image retrieval method that combines self-attention and convolution is proposed. Self-attention and convolution are two powerful methods for feature extraction,and the two are effectively fused toextract efficient and robust features. The local features of the image are extracted through the convolutional layer,and then the global information is captured by inputting into the self-attention model to generate the image features with higher quality for image retrieval. Inorder to integrate the self-attention model and convolution effectively,the self-attention model is improved to integrate the local featureswith the global representation better,so as to improve the image retrieval effect. Experiments on the CUB - 200 - 2011 and CARS196image retrieval datasets show that the proposed method can effectively improve the retrieval accuracy.

相似文献/References:

[1]钱秋银 张正兰.一种基于多分类SVM的相关反馈图像检索方法[J].计算机技术与发展,2009,(08):65.
 QIAN Qiu-yin,ZHANG Zheng-lan.One Method of Relevance Feedback Image Retrieval Based on Multi - Classification SVM[J].,2009,(07):65.
[2]闫乐林 亓莱滨 蔡平胜.一种基于内容的图像检索系统的设计与实现[J].计算机技术与发展,2009,(12):205.
 YAN Le-lin,QI Lai-bin,CAI Ping-sheng.A Kind of System Design and Implementation Approach on Content- Based Image Retrieval[J].,2009,(07):205.
[3]韩轩 陈海山.综合颜色和局部空间特征的彩色图像检索方法[J].计算机技术与发展,2008,(01):122.
 HAN Xuan,CHEN Hai-shan.Content- Based Image Retrieval Using Color and Spatial Feature Histograms[J].,2008,(07):122.
[4]彭太乐 蒋建国 魏仕民 沈克.一种融合语义的图像检索技术研究[J].计算机技术与发展,2008,(03):102.
 PENG Tai-le,JIANG Jian-guo,WEI Shi-min,et al.Research on Image Retrieval Technique Using Semantic Information[J].,2008,(07):102.
[5]王朝晖 孙惠萍.图像检索中IRRL模型研究[J].计算机技术与发展,2008,(12):35.
 WANG Zhao-hui,SUN Hui-ping.Research of IRRL Model in Image Retrieval[J].,2008,(07):35.
[6]冯亚 耿国华 周明全 刘瑞华.基于颜色特征图像检索与相关反馈综合研究[J].计算机技术与发展,2007,(12):251.
 FENG Ya,GENG Guo-hua,ZHOU Ming-quan,et al.Integrated Research of Color- Based Image Retrieval and Relevance Feedback[J].,2007,(07):251.
[7]汪彦龙 刘金华 王丽萍.基于对象空间关系的图像检索方法研究[J].计算机技术与发展,2006,(01):66.
 WANG Yan-long,LIU Jin-hua,WANG Li-ping.Research of Image Retrieval Method Based on Object Spatial Relationships[J].,2006,(07):66.
[8]汪慧兰 赵海峰 罗斌.基于局部颜色空间特征的图像检索[J].计算机技术与发展,2006,(01):76.
 WANG Hui-lan,ZHAO Hai-feng,LUO Bin.Image Retrieval Based on Local Color and Spatial Features[J].,2006,(07):76.
[9]凌俊斌 庄卫华 刘鲁西.图像检索中的主动学习及其可测量性[J].计算机技术与发展,2006,(02):132.
 LING Jun-bin,ZHUANG Wei-hua,LIU Lu-xi.Active Learning and Its Scalability for Image Retrieval[J].,2006,(07):132.
[10]吴波 王保保.几种基于内容的图像检索的方法[J].计算机技术与发展,2006,(06):191.
 WU Bo,WANG Bao-bao.Some Methods about Content- Based Image Retrieval[J].,2006,(07):191.

更新日期/Last Update: 2023-07-10