[1]游 兰,张涵钰,韩凡宇,等.面向城市人群时空热点预测的混合神经网络[J].计算机技术与发展,2023,33(06):194-201.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 029]
 YOU Lan,ZHANG Han-yu,HAN Fan-yu,et al.A Deep Hybrid Neural Network Model Oriented to Urban Crowd Spatio-temporal Hotspot Prediction[J].,2023,33(06):194-201.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 029]
点击复制

面向城市人群时空热点预测的混合神经网络()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年06期
页码:
194-201
栏目:
新型计算应用系统
出版日期:
2023-06-10

文章信息/Info

Title:
A Deep Hybrid Neural Network Model Oriented to Urban Crowd Spatio-temporal Hotspot Prediction
文章编号:
1673-629X(2023)06-0194-08
作者:
游 兰1 张涵钰1 韩凡宇1 金 红1 崔海波1 何 渡2 汪坤钰1 郑巧仙1
1. 湖北大学 计算机与信息工程学院,湖北 武汉 430062;
2. 湖北省科技信息研究院,湖北 武汉 430071
Author(s):
YOU Lan1 ZHANG Han-yu1 HAN Fan-yu1 JIN Hong1 CUI Hai-bo1 HE Du2 WANG Kun-yu1 ZHENG Qiao-xian1
1. School of Computer Science and Information Engineering,Hubei University,Wuhan 430062,China;
2. Hubei Academy of Scientific and Technical Information,Wuhan 430071,China
关键词:
社会计算时空数据混合神经网络城市人群热点时空相关性
Keywords:
social computingspatio-temporal datahybrid neural networkurban crowd hotspotsspatio-temporal correlation
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 06. 029
摘要:
城市人群时空热点预测对公共安全应急决策有重要的意义。 城市人群热点区域往往伴随时间空间的推移而快速演化,如何发掘利用热区的时空相关性是精准预测城市人群热点变化趋势的关键。 该文提出了一种基于深度学习的混合神经网络模型,即 CNN-Seq2Seq-Attention( CSA) ,用来预测连续一周城市人群热点的时空变化分布。 为了较好捕捉热点区域的空间信息,CSA 模型采用卷积神经网络提取城市热点区域的特征向量,同时,考虑到长时时序数据的周期性,CSA结合 Seq2Seq 与 Attention 注意力机制建模人群热点在连续特征日下相同时间片段的时间周期规律。 其中,针对人群热点随时间变化的不均匀特性,CSA 采用了一种改进的时间片段划分方法,即,基于生活作息的不等长时间段作为数据划分依据。 实验使用了连续 3 个月的城市出租车轨迹数据集,将每周 7 天标识成 7 个特征日,每个特征日被划分为 7 个时间片段,采用预测结果的均方根误差( RMSE)为评估指标。 实验结果表明,较传统的 PreHA、HA 和 ARIMA 方法,CSA 模型效果更好,同时,相较 Seq2Seq 和 CNN-Seq2Seq 模型,CSA 模型预测误差最大分别降低 6. 4% 和 3. 8% 。
Abstract:
The prediction of the urban crow hotspots is of great significance to the public security emergency decision. The urban crowhotspots always evolve rapidly with the changes of time?
and space. The key to accurately predict the trends of the urban crowd hotspots ishow to explore and utilize the spatio-temporal correlations of the hotspots. We propose a hybrid neural network model based on deeplearning,namely CNN-seq2seq-attention ( CSA) model,for the urban crowd hotspots predictions. Considering the spatial correlationsamong hotspots areas,
the eigenvectors of urban hotspots are extracted through the CNNs model. Also,CSA is combined the Seq2Seq andAttention mechanism to model the time cycle rules of crowd hotspots?
for the certain time segment in continuous days. Meanwhile,in viewof the uneven characteristics of urban crowd hotspots changing with time,an improved time divisions method is designed?
in CSA,which isan unequal time periods division method based on urban daily schedules. In this paper, the urban taxi track dataset of 3 consecutivemonths is used in the experiment. 7 days per week are identified as seven featured-days,each of which is divided into 7 time segments.The mean square error ( RMSE) is the evaluation index. The experimental results show that the traditional methods including PreHA,HAand ARIMA are not as good as neural networks, and CSA can get better accuracy. Moreover, compared with Seq2Seq and CNN -Seq2Seq,CSA can reduce the prediction errors by 6. 4% and 3. 8% respectively.

相似文献/References:

[1]张国生.基于社会计算的需求过程形式描述框架[J].计算机技术与发展,2013,(09):39.
 ZHANG Guo-sheng.A Formal Requirements Processes Description Framework Based on Social Computing[J].,2013,(06):39.
[2]殷凤霞.社会网络中基于内容语义的新闻推荐方法研究[J].计算机技术与发展,2013,(10):253.
 YIN Feng-xia.Research on Method of News Recommendation Based on Content Semantic in Social Network[J].,2013,(06):253.
[3]黄伟航,王星捷.三维智慧校园系统的研究与实现[J].计算机技术与发展,2020,30(03):167.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 032]
 HUANG Wei-hang,WANG Xing-jie.Research and Implementation of 3D Intelligent Campus System[J].,2020,30(06):167.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 032]
[4]李 栋,张 蕾*,郭茂祖,等.基于时空卷积残差网络的空气质量预测[J].计算机技术与发展,2020,30(06):124.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 024]
 LI Dong,ZHANG Lei *,GUO Mao-zu,et al.Air Quality Prediction Based on Spatio-temporal Convolution Residual Network[J].,2020,30(06):124.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 024]
[5]杨井荣,柳 军.基于有序树的时空关联规则数据挖掘的应用[J].计算机技术与发展,2021,31(06):19.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 004]
 YANG Jing-rong,LIU Jun.Application of Spatiotemporal Association Rules Data MiningBased on Ordered Tree[J].,2021,31(06):19.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 004]

更新日期/Last Update: 2023-06-10