[1]李燕燕,闫德勤.一种优化的近邻保持嵌入降维算法研究[J].计算机技术与发展,2023,33(06):28-34.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 005]
 LI Yan-yan,YAN De-qin.Research on an Optimized Nearest Neighbor Preserving Embedding Algorithm for Dimensionality Reduction[J].,2023,33(06):28-34.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 005]
点击复制

一种优化的近邻保持嵌入降维算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年06期
页码:
28-34
栏目:
大数据与云计算
出版日期:
2023-06-10

文章信息/Info

Title:
Research on an Optimized Nearest Neighbor Preserving Embedding Algorithm for Dimensionality Reduction
文章编号:
1673-629X(2023)06-0028-07
作者:
李燕燕1 闫德勤2
1. 河北建筑工程学院,河北 张家口 075000;
2. 辽宁师范大学,辽宁 大连 116081
Author(s):
LI Yan-yan1 YAN De-qin2
1. Hebei University of Architecture,Zhangjiakou 075000,China;
2. Liaoning Normal University,Dalian 116081,China
关键词:
近邻保持嵌入流形学习稀疏降维类别信息
Keywords:
nearest neighbor preserving embeddingmanifold learningsparsedimensionality reductioncategory information
分类号:
TP18;TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 06. 005
摘要:
近邻保持嵌入算法 NPE 是流形学习领域中一种重要的降维算法,现已成功应用于很多领域,例如人脸识别、语音识别等,但在处理局部邻域信息量不足、存在短路以及流形曲率大等稀疏数据时,原始数据的几何拓扑结构损坏严重。 其主要原因是在邻域选择中没有对数据类间信息进行很好的区分。 基于此,提出了一种优化的近邻保持算法( ONPE) ,在NPE 算法中对数据类间信息进行优化,构造类间权值矩阵;并在低维局部重建时引入类内密度信息,从数据类内和类间两个维度出发,更好地避免数据在近邻选取方向上的缺失。 将 ONPE 算法应用于图像检索等实验,结果表明在图像检索的实验中该算法有较高的查准率和查全率。 ONPE 相对于 NPE 降维的时间复杂度并没有增加,验证了算法的实用性和有效性。
Abstract:
The nearest neighbor preserving embedding algorithm ( NPE) is an important dimensionality reduction algorithm in manifoldlearning,which has been successfully applied to many fields,such as face recognition,speech recognition,etc. However,when dealingwith sparse data such as insufficient local neighborhood information,short circuit and large manifold curvature,the geometric topology ofthe original data is seriously damaged. The main reason is that the information between data classes is not well differentiated inneighborhood selection. Based on this,we propose an optimized nearest neighbor preserving algorithm ( ONPE) ,which optimizes theinter-class information in the NPE algorithm,constructs the inter-class weight matrix,and introduces the intra-class density informationin the low-dimensional local reconstruction. Starting from the two dimensions of data class and inter - class, we can better avoid theabsence of data in the direction of neighbor selection. The experiment results show that the proposed algorithm has higher precision andrecall ratio in the experiment of image retrieval. The time complexity of ONPE is not increased compared with NPE,which verifies thepracticability and effectiveness of the algorithm.

相似文献/References:

[1]闫志敏 刘希玉.流形学习及其算法研究[J].计算机技术与发展,2011,(05):99.
 YAN Zhi-min,LIU Xi-yu.Manifold Learning and Research of Algorithm[J].,2011,(06):99.
[2]王健,韩志艳.鲁棒主元分析及在故障诊断中的应用[J].计算机技术与发展,2013,(06):79.
 WANG Jian[],HAN Zhi-yan[].Robust Principal Component Analysis and Its Application in Fault Diagnosis[J].,2013,(06):79.
[3]吴飞,荆晓远,李文倩,等.基于流形学习的整体正交稀疏保留鉴别分析[J].计算机技术与发展,2014,24(06):63.
 WU Fei,JING Xiao-yuan,LI Wen-qian,et al.Analysis of Preserving Discriminant of Holistic Orthogonal Sparsity Based on Manifold Learning[J].,2014,24(06):63.
[4]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(06):34.
[5]凌若冰[],荆晓远[],吴飞[],等. 基于流形学习的正交稀疏保留投影鉴别分析[J].计算机技术与发展,2015,25(01):66.
 LING Ruo-bing[],JING Xiao-yuan[],WU Fei[],et al. Orthogonal Sparsity Preserving Discriminant Analysis Based on Manifold Learning[J].,2015,25(06):66.
[6]刘丹霞,干宗良,杨文峰. 基于相似性约束的人脸超分辨率重建算法[J].计算机技术与发展,2015,25(08):58.
 LIU Dan-xia,GAN Zong-liang,YANG Wen-feng. A Face Super-resolution Reconstruction Algorithm Based on Similarity Constraints[J].,2015,25(06):58.
[7]徐胜超.流形学习降维算法中一种新动态邻域选择方法[J].计算机技术与发展,2022,32(01):85.[doi:10. 3969 / j. issn. 1673-629X. 2022. 01. 015]
 XU Sheng-chao.A Dynamic Neighborhood Selection Approach for ManifoldLearning Dimensionality Reduction Algorithm[J].,2022,32(06):85.[doi:10. 3969 / j. issn. 1673-629X. 2022. 01. 015]
[8]杨秋颖,翁小清.基于 LLE 和高斯混合模型的时间序列聚类[J].计算机技术与发展,2022,32(08):33.[doi:10. 3969 / j. issn. 1673-629X. 2022. 08. 006]
 YANG Qiu-ying,WENG Xiao-qing.Time Series Clustering Based on LLE and Gaussian Mixture Model[J].,2022,32(06):33.[doi:10. 3969 / j. issn. 1673-629X. 2022. 08. 006]

更新日期/Last Update: 2023-06-10