[1]张 鑫,冼广铭*,梅灏洋,等.基于 Span 方法和多叉解码树的实体关系抽取[J].计算机技术与发展,2023,33(05):152-158.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 023]
 ZHANG Xin,XIAN Guang-ming*,MEI Hao-yang,et al.Entity Relation Extraction Based on Span Method and Multi-fork Decoding Tree[J].,2023,33(05):152-158.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 023]
点击复制

基于 Span 方法和多叉解码树的实体关系抽取()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年05期
页码:
152-158
栏目:
人工智能
出版日期:
2023-05-10

文章信息/Info

Title:
Entity Relation Extraction Based on Span Method and Multi-fork Decoding Tree
文章编号:
1673-629X(2023)05-0152-07
作者:
张 鑫冼广铭* 梅灏洋周岑钰刘赢方
华南师范大学 软件学院,广东 佛山 528225
Author(s):
ZHANG XinXIAN Guang-ming* MEI Hao-yangZHOU Cen-yuLIU Ying-fang
School of Software,South China Normal University,Foshan 528225,China
关键词:
实体识别关系抽取深度学习预训练模型多叉解码树图神经网络
Keywords:
entity recognitionrelationship extractiondeep learningpre-trained modelmulti-fork decoding treegraph neural network
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 05. 023
摘要:
实体关系抽取作为自然语言处理领域的一项关键技术,在构建知识图谱、信息检索等领域有着极为重要的意义。然实体关系抽取模型普遍存在词与词之间依赖性运用不足、实体识别效果低下以及单解码带来的三元组强行执行某种不必要顺序的问题。 为了解决这三个方面的问题,提升模型的性能,提出了一种新的实体关系抽取模型。 该模型首先运用提取特征能力更强的 BERT 预训练模型获取句子表征,然后采用图卷积神经网络来增强实体与关系之间的依赖关系,再使用对实体提取能力更强的 Span 方法(识别实体的神经网络方法) 进行实体抽取,最后采用深度多叉解码树实施并行解码得到相应的关系三元组。 在 CoNLL04、ADE 数据集上的实验结果表明,与其他的关系抽取基线模型相比,该模型的 F1 值具有较好的提升,同时也验证了该文模型的有效性与泛化能力。
Abstract:
As a key technology in the field of natural language processing, entity relation extraction is of great significance in theconstruction of knowledge graphs,information retrieval and other fields. However,the entity relation extraction model generally has theproblems of insufficient application of dependencies between words, low entity recognition effect, and the forced execution of anunnecessary order of triples brought by single decoding. In order to solve three problems and improve the performance of the model,anew entity relation model is proposed. The model?
first uses the BERT pre-training model with stronger feature extraction ability to obtainsentence representation,and then uses graph convolutional neural network to enhance the dependency between entities and relationships.The Span method ( Neural Network Methods for Recognizing Entities) ,which has stronger entity extraction ability,is used for entity extraction. Finally,a deep multi-fork decoding tree is used to implement parallel decoding to obtain the corresponding relationship triples.The experiments on the CoNLL04 and ADE datasets show that compared with other relation extraction baseline models,the F1 value ofthe proposed model has a better improvement. And it also verifies the effectiveness and generalization ability of the proposed model.

相似文献/References:

[1]赵震,张龙昌. XML文档实体识别技术研究[J].计算机技术与发展,2014,24(10):84.
 ZHAO Zhen,ZHANG Long-chang. Research on Entity Identification Technology on XML Documents[J].,2014,24(05):84.
[2]田 芳,孙 晓,孙本旺.基于网络知识百科的情感语义抽取研究[J].计算机技术与发展,2019,29(06):52.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 011]
 TIAN Fang,SUN Xiao,SUN Ben-wang.Research on Extraction of Affective Lexical Semantic Using Encyclopedia of Network Knowledge[J].,2019,29(05):52.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 011]
[3]赵君珂,张振宇,蔡开裕.基于自然语言处理的医学实体识别与标签提取[J].计算机技术与发展,2019,29(09):18.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 004]
 ZHAO Jun-ke,ZHANG Zhen-yu,CAI Kai-yu.Medical Entity Recognition and Label Extraction Based on Natural Language Processing[J].,2019,29(05):18.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 004]
[4]尹 鹏,周 林,郭 强,等.基于短语级注意力机制的关系抽取方法[J].计算机技术与发展,2019,29(09):24.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 005]
 YIN Peng,ZHOU Lin,GUO Qiang,et al.Relation Extraction Based on Phrase-level Attention[J].,2019,29(05):24.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 005]
[5]彭 怀,宋井宽,唐向红.基于信息匹配方法的中文知识库问答系统[J].计算机技术与发展,2022,32(02):14.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 002]
 PENG Huai,SONG Jing-kuan,TANG Xiang-hong.Question Answering System of Chinese Knowledge Base Based on Information Matching Method[J].,2022,32(05):14.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 002]
[6]盖素丽,檀改芳,唐 松,等.面向科技服务的专家推荐模型研究[J].计算机技术与发展,2022,32(10):21.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 004]
 GE Su-li,TAN Gai-fang,TANG Song,et al.Expert Recommendation Model for Technology Services[J].,2022,32(05):21.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 004]
[7]毛宏亮,艾孜尔古丽,陈德刚.基于多头注意力的电网调度领域命名实体识别[J].计算机技术与发展,2023,33(02):181.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 027]
 MAO Hong-liang,Azragul,CHEN De-gang.Named Entity Recognition in Grid Dispatch Domain Based on Multi-headed Attention[J].,2023,33(05):181.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 027]
[8]李正辉,廖光忠.基于多层次特征提取的中文医疗实体识别[J].计算机技术与发展,2023,33(09):119.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 018]
 LI Zheng-hui,LIAO Guang-zhong.Chinese Medical Entity Recognition Based on Multi-level Feature Extraction[J].,2023,33(05):119.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 018]
[9]付学敬,丁肖摇.基于多层次语义感知的中文关系抽取研究[J].计算机技术与发展,2024,34(01):143.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 021]
 FU Xue-jing,DING Xiao-yao.Research on Chinese Relation Extraction Based on Multi-level Semantic Perception[J].,2024,34(05):143.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 021]
[10]姚飞杨,刘晓静*.基于 RoBERTa-Effg-Adv 的实体关系联合抽取方法[J].计算机技术与发展,2024,34(03):147.[doi:10. 3969 / j. issn. 1673-629X. 2024. 03. 022]
 YAO Fei-yang,LIU Xiao-jing*.Entity and Relation Joint Extraction Method Based on RoBERTa-Effg-Adv[J].,2024,34(05):147.[doi:10. 3969 / j. issn. 1673-629X. 2024. 03. 022]
[11]卜意磊,庞文迪,吴甜甜,等.面向食品监管领域的知识图谱构建研究[J].计算机技术与发展,2023,33(06):202.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 030]
 BU Yi-lei,PANG Wen-di,WU Tian-tian,et al.Research on Knowledge Graph Construction for Food Supervision[J].,2023,33(05):202.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 030]

更新日期/Last Update: 2023-05-10