[1]张栋昱,赵 磊.融合注意力机制改进 ResNet 的人脸表情识别[J].计算机技术与发展,2023,33(05):130-137.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 020]
 ZHANG Dong-yu,ZHAO Lei.Improved Facial Expression Recognition in ResNet by Integrating Attention Mechanism[J].,2023,33(05):130-137.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 020]
点击复制

融合注意力机制改进 ResNet 的人脸表情识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年05期
页码:
130-137
栏目:
人工智能
出版日期:
2023-05-10

文章信息/Info

Title:
Improved Facial Expression Recognition in ResNet by Integrating Attention Mechanism
文章编号:
1673-629X(2023)05-0130-08
作者:
张栋昱赵 磊
武汉大学 国家网络安全学院,湖北 武汉 430072
Author(s):
ZHANG Dong-yuZHAO Lei
School of National Cyber Security,Wuhan University,Wuhan 430072,China
关键词:
人脸表情识别深度学习残差网络卷积注意力机制Dropout
Keywords:
facial expression recognitiondeep learningresidual networkconvolutional attention mechanismDropout
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 05. 020
摘要:
鉴于现有人脸表情识别方法在表情识别过程中存在的诸多痛点,比如对有效特征提取不够、泛化能力不强、识别准确性不高等,提出了一种改进残差网络的人脸表情识别方法。 首先,引入卷积注
意力机制,对网络中间的特征图进行重构,强调重要特征,抑制一般特征;其次,使用激活函数 PReLU 替换 ResNet 中原有的 ReLU,在提高模型拟合复杂数据能力的同时,避免出现在负值区域的梯度永远为 0,进而导致模型训练时无法执行反向传播的问题;然后,在网络输出层的avgpool 与 fc 之间加入 Dropout 抑制过拟合,以进一步增加网络模型的鲁棒性与泛化性;最后,在公开数据集 CK+上的仿真实验结果表明,该方法的准确识别率达到 96. 12% 。 与现有多种经典算法,以及 baseline 算法即 ResNet101 相比,改进的网络模型具有更好的识别效果,证明了该方法的有效性与优异性。
Abstract:
In view of many pain points in the process of expression recognition of the existing facial expression recognition methods,suchas the extraction of effective features is not enough, generalization ability is not strong, recognition accuracy is not high, a facialexpression recognition method with improved residual network is proposed. Firstly,the convolutional attention mechanism is introducedto reconstruct the feature map in the middle of the network,emphasizing important features and suppressing general features. Secondly,the activation function PReLU is used to replace the original ReLU in ResNet,which can not only improve the ability of the model to fitcomplex data, but also avoid the problem that the gradient in the negative?
area is always zero, which leads to the failure ofbackpropagation in model training. Then, Dropout is added between avgpool and fc in the output layer of the network to suppressoverfitting,
so as to further increase the robustness and generalization of the network model. Finally,the simulation experiments on theopen dataset CK+ show that the accurate recognition rate of the proposed method reaches 96. 12% . The improved network model hasbetter recognition effect than the existing classical algorithms and baseline algorithm,namely ResNet101,which proves the effectivenessand excellence of the proposed method.

相似文献/References:

[1]潘峥嵘,贺秀伟.人脸表情识别在智能机器人中的应用研究[J].计算机技术与发展,2018,28(02):173.[doi:10.3969/j.issn.1673-629X.2018.02.037]
 PAN Zheng-rong,HE Xiu-wei.Research on Application of Facial Expression Recognition in Intelligent Robot[J].,2018,28(05):173.[doi:10.3969/j.issn.1673-629X.2018.02.037]
[2]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].,2018,28(05):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
[3]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(05):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[4]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[5]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(05):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[6]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(05):19.
[7]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(05):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[8]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(05):1.
[9]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(05):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[10]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(05):1.
[11]付倩倩,李 昂.一种改进的卷积神经网络的表情识别算法[J].计算机技术与发展,2020,30(11):80.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 015]
 FU Qian-qian,LI Ang.An Improved Facial Expression Recognition Technology Based on Convolutional Neural Network[J].,2020,30(05):80.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 015]
[12]植炜基,刘春雨,郑婉君,等.基于生成对抗网络的人脸表情识别技术综述[J].计算机技术与发展,2021,31(增刊):1.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 001]
 ZHI Wei-ji,LIU Chun-yu,ZHENG Wan-jun,et al.Survey of Facial Expression Recognition Technology Based onGenerative Adversarial Network[J].,2021,31(05):1.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 001]
[13]吕 鹏,单剑锋.基于多特征融合的人脸表情识别算法[J].计算机技术与发展,2022,32(10):151.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 025]
 LYU Peng,SHAN Jian-feng.Facial Expression Recognition Algorithm Based on Multi-feature Fusion[J].,2022,32(05):151.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 025]

更新日期/Last Update: 2023-05-10