[1]陈 赛,刘文杰,黄国耀,等.高维序列数据降维方法在证券市场的应用研究[J].计算机技术与发展,2023,33(04):190-197.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 028]
 CHEN Sai,LIU Wen-jie,HUANG Guo-yao,et al.Research on Application of Dimension Reduction Method of High Dimensional Sequence Data in Securities Market[J].,2023,33(04):190-197.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 028]
点击复制

高维序列数据降维方法在证券市场的应用研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年04期
页码:
190-197
栏目:
新型计算应用系统
出版日期:
2023-04-10

文章信息/Info

Title:
Research on Application of Dimension Reduction Method of High Dimensional Sequence Data in Securities Market
文章编号:
1673-629X(2023)04--0190-08
作者:
陈 赛1 刘文杰1 黄国耀1 卢凌峰1 李华康2 孙国梓1*
1. 南京邮电大学 计算机学院,江苏 南京 210023;
2. 西交利物浦大学 人工智能与高级计算学院(太仓),江苏 苏州 215123
Author(s):
CHEN Sai1 LIU Wen-jie1 HUANG Guo-yao1 LU Ling-feng1 LI Hua-kang2 SUN Guo-zi1*
1. School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;
2. School of Artificial Intelligence and Advanced Computing,XJTLU Entrepreneur College ( Taicang) ,Suzhou 215123,China
关键词:
数据挖掘易经特征筛选证券预测机器学习
Keywords:
data miningIChingfeature screeningsecurities forecastingmachine learning
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 04. 028
摘要:
证券市场数据分析与预测,作为一个经典的大数据分析场景,很多数据挖掘方法已经在本领域得到实际应用。 但是鉴于企业本身情况的变化以及证券市场的人为操作等情况,现有的各种大数据挖掘方法无法应对不可见或者未出现的情况,为此论文探索使用易经方法,将其应用在证券市场的数据挖掘和分析预测。 利用数据挖掘进行特征筛选、数据降维,通过滑动时间窗、随机森林、三才映射等方法实现传统易经体系中的断卦步骤,将易经概念、规则抽象成算法并对卦辞分类,由解卦算法得出预测值。 与先前的预测模型相比,该模型融合易经预测体系与机器学习,充分利用了证券市场的场景特征与历史数据,最终对证券市场平稳、上升、下跌三种发展趋势进行预测。 使用 10 年内股票证券交易公共数据集进行实验,准确率优于 SVM、XGBoost 等流行的机器学习算法,并在分行业建模中进一步提升了效果。
Abstract:
As a classic big data analysis scenario,many data mining methods have been practically applied in the field of securities marketdata analysis and predicting. However,various existing data mining methods cannot deal with invisible or non-existent situations causedby the company diversification and the human intervention. Therefore, IChing method is used in data mining,analysis and prediction ofsecurities market. Data mining is used for feature selection and data dimension reduction,sliding time window,random forest,three-waymapping and other methods are adopted to realize the steps of hexagrams breaking in the traditional IChing system,and the concepts and rules of IChing are abstracted into an algorithm and the hexagrams are classified,and the predicted values are obtained from the hexagramsbreaking algorithm. Compared with the previous prediction model, the proposed model integrates the IChing prediction system andmachine learning,makes full use of the scene characteristics and historical data of the securities market,and finally predicts the stable,rising and falling development trends of the securities market. Using the public data set of stock exchange within 10 years for experiment,the accuracy is better than that of SVM,XGBoost and other popular machine learning algorithms,and the effect is further improved in thesub-industry modeling.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(04):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(04):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(04):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(04):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(04):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(04):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(04):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(04):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(04):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(04):113.

更新日期/Last Update: 2023-04-10