[1]尹拓凯*,岳文静,陈 志.面向拜占庭攻击的认知用户分类[J].计算机技术与发展,2023,33(04):102-107.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 015]
 YIN Tuo-kai*,YUE Wen-jing,CHEN Zhi.Cognitive User Classification for Byzantine Attack[J].,2023,33(04):102-107.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 015]
点击复制

面向拜占庭攻击的认知用户分类()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年04期
页码:
102-107
栏目:
网络空间安全
出版日期:
2023-04-10

文章信息/Info

Title:
Cognitive User Classification for Byzantine Attack
文章编号:
1673-629X(2023)04-0102-06
作者:
尹拓凯1* 岳文静1 陈 志2
1. 南京邮电大学 通信与信息工程学院,江苏 南京 210000;
2. 南京邮电大学 计算机学院,江苏 南京 210000
Author(s):
YIN Tuo-kai1* YUE Wen-jing1 CHEN Zhi2
1. School of Communication & Information Engineering,Nanjing University of Posts & elecommunications, Nanjing 210000,China;
2. School of Computer,Nanjing University of Posts & Telecommunications,Nanjing 210000,China
关键词:
认知无线电图神经网络拜占庭攻击恶意用户无线通信
Keywords:
cognitive radiograph neural networkByzantine attackmalicious userwireless communication
分类号:
TP309;TN925
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 04. 015
摘要:
万物互联的蓬勃发展使得承载业务的无线资源日益短缺,认知无线电技术是具有广大前景的技术。 而作为实现认知无线电的基础环节的频谱感知却面临特有的安全威胁,其中拜占庭攻击伪造频谱感知数据,利用认知网络的开放性和合作机制,恶意篡改上传数据,致使融合中心做出错误判断,造成频谱资源损失。 因此,针对拜占庭攻击下的安全问题,该文提出了基于图神经网络的异常度检测,依据图神经网络得到数据异常程度,结合全局判决与邻居用户冲突程度建立异常度模型。 首先,介绍了认知网络频谱感知的相关原理;接着,展示了认知网络的模型,并对拜占庭攻击做了简单的概括。 研究结果表明,该算法在拜占庭攻击中取得优异的识别性能,不仅降低了正常用户的误判概率,同时提高了恶意用户的检测概率。
Abstract:
The vigorous development of the Internet of things makes the wireless resources carrying services increasingly scarce. Cognitiveradio technology is a technology with broad prospects. Spectrum sensing,as the basic link of cognitive radio, faces a unique securitythreat. Byzantine forges spectrum sensing data and maliciously tampers with the uploaded data by using the openness and cooperationmechanism of cognitive network,resulting in the wrong judgment of fusion center FC and the loss of spectrum resources. Therefore,aiming at the security problem under Byzantine attack,we propose a reputation detection based on graph neural network,obtain the degreeof data abnormality according to graph neural network,and establish a reputation model combined with the degree of conflict betweenglobal judgment and neighbor users. Firstly,we introduce the relevant principles?
of spectrum sensing in cognitive network,then show themodel of cognitive network,and briefly summarize the Byzantine attack. The results show that the proposed algorithm achieves excellentrecognition performance in Byzantine attack,which not only reduces the false positive rate,but also improves the real rate.

相似文献/References:

[1]林琳 周贤伟 薛楠 刘臻臻.认知无线电网络安全路由问题研究[J].计算机技术与发展,2010,(01):155.
 LIN Lin,ZHOU Xian-wei,XUE Nan,et al.Study on Problems of Security Routing in Cognitive Radio Networks[J].,2010,(04):155.
[2]孙丽艳.基于激励机制的认知无线电自私行为研究[J].计算机技术与发展,2009,(10):170.
 SUN Li-yan.Study of Cognitive Radio' Selfish Behavior Based on Two- Stage Incentives Mechanism[J].,2009,(04):170.
[3]郭云玮 刘全 高俊.不同衰落信道下的协作感知性能研究[J].计算机技术与发展,2011,(05):13.
 GUO Yun-wei,LIU Quan,GAO Jun.Performance of Cooperative Spectrum Sensing over Different Fading Channels[J].,2011,(04):13.
[4]任长城 马雏.智能家居中基于认知无线电的通信协议设计[J].计算机技术与发展,2011,(08):14.
 REN Chang-cheng,MA Chu.A Design of Cognitive Radio Communication Protocol in Smart Home[J].,2011,(04):14.
[5]汪晓睿 刘全.认知无线电网络中频谱感知安全的研究进展[J].计算机技术与发展,2011,(12):155.
 WANG Xiao-rui,LIU Quan.A Survey on Spectrum Sensing Security Issues in Cognitive Radio Networks[J].,2011,(04):155.
[6]宗平 刘柳 乔秀泉[].认知无线电技术在ZigBee中的应用研究[J].计算机技术与发展,2012,(08):241.
 ZONG Ping,LIU Liu,QIAO Xiu-quan.Application Research of Cognitive Radio Technology in ZigBee[J].,2012,(04):241.
[7]王韦刚 胡海峰.基于压缩感知的协作频谱检测[J].计算机技术与发展,2012,(12):241.
 WANG Wei-gang,HU Hai-feng.Collaborative Spectrum Detection Based on Compressed Sensing[J].,2012,(04):241.
[8]刘洋,季薇,侯晓赟.一种改进的基于 OMP 重建的宽带频谱感知算法[J].计算机技术与发展,2013,(01):99.
 LIU Yang,JI Wei,HOU Xiao-yun.A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on OMP[J].,2013,(04):99.
[9]赵之旭,田峰.一种改进的认知无线电功率控制博弈算法[J].计算机技术与发展,2013,(02):101.
 ZHAO Zhi-xu,TIAN Feng.An Improved Power Control Game Algorithm in Cognitive Radios[J].,2013,(04):101.
[10]孔小丽,周井泉.基于用户需求的改进型频谱资源分配算法[J].计算机技术与发展,2013,(03):73.
 KONG Xiao-li,ZHOU Jing-quan.Advanced Spectrum Resource Allocation Algorithm Based on User Requirement[J].,2013,(04):73.

更新日期/Last Update: 2023-04-10