[1]张金飞,岳文静,陈 志.基于改进麻雀搜索算法的认知无线电频谱分配[J].计算机技术与发展,2023,33(01):95-100.[doi:10. 3969 / j. issn. 1673-629X. 2023. 01. 015]
 ZHANG Jin-fei,YUE Wen-jing,CHEN Zhi.Spectrum Allocation of Cognitive Radio Based on Improved Sparrow Search Algorithm[J].,2023,33(01):95-100.[doi:10. 3969 / j. issn. 1673-629X. 2023. 01. 015]
点击复制

基于改进麻雀搜索算法的认知无线电频谱分配()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年01期
页码:
95-100
栏目:
软件技术与工程
出版日期:
2023-01-10

文章信息/Info

Title:
Spectrum Allocation of Cognitive Radio Based on Improved Sparrow Search Algorithm
文章编号:
1673-629X(2023)01-0095-06
作者:
张金飞1 岳文静1 陈 志2
1. 南京邮电大学 通信与信息工程学院,江苏 南京 210003;
2. 南京邮电大学 计算机学院,江苏 南京 210023
Author(s):
ZHANG Jin-fei1 YUE Wen-jing1 CHEN Zhi2
1. School of Telecommunication & Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;
2. School of Computer,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
关键词:
认知无线电麻雀搜索算法频谱分配透镜成像反向学习Levy 策略系统效益
Keywords:
cognitive radiosparrow search algorithmspectrum allocationlens imaging reverse learningLevy strategysystem benefit
分类号:
TP301. 6
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 01. 015
摘要:
针对认知无线电中以最大程度提高网络效益为目的的频谱分配问题,提出了一种基于麻雀搜索算法的改进算法。首先,考虑到种群多样性对实验结果的影响,利用透镜成像反向学习策略,在最优个体基础上产生新个体,进而继续寻优,来进一步提高算法的收敛精度;然后,采用变步长设计,在影响步长因素的关键参数中加入步长调整机制,可以调节局部精度和全局最优之间的平衡关系。 再对种群中负责侦查预警的麻雀位置引入 Levy 飞行策略来更新其位置,有助于增强算法跳出局部极值能力和总体寻优的性能。 最后,将改进的麻雀搜索算法应用于认知无线电的频谱分配问题,通过与遗传算法、粒子群算法、海鸥算法及基础麻雀搜索算法进行对比仿真表明,改进的麻雀搜索算法,相比于基础麻雀算法和其他算法,具有更高的网络效益和更快的收敛速度,可以达到有效改善频谱利用率的目的。
Abstract:
An improved algorithm based on sparrow search algorithm is proposed for spectrum allocation in cognitive radio aiming at maximizing network efficiency. Firstly,in view of the effect of population diversity on experimental results,the reverse learning strategy oflens imaging is used,new individuals are generated on the optimal individuals and continue to search for optimization to improve the convergence accuracy of the algorithm. Then, with variable step design, the step adjustment mechanism is added to the key parametersaffecting the step    size factor, which can adjust the balance relationship between local accuracy and global optimization. And theintroduction of Levy flight strategies to update the positions of sparrows in   the population responsible for reconnaissance and earlywarning can help enhance the algorithm ’ s ability to jump out of local extremes and overall optimization performance. Finally, an improved sparrow search algorithm is applied to cognitive radio spectrum allocation problem, and compared with genetic algorithm,particle swarm optimization algorithm,seagull algorithm  and sparrow search algorithm. The results show that the improved sparrow searchalgorithm,compared with the basic sparrow algorithm and other algorithms,has higher network efficiency and faster convergence speed,which can effectively improve the spectrum utilization.

相似文献/References:

[1]林琳 周贤伟 薛楠 刘臻臻.认知无线电网络安全路由问题研究[J].计算机技术与发展,2010,(01):155.
 LIN Lin,ZHOU Xian-wei,XUE Nan,et al.Study on Problems of Security Routing in Cognitive Radio Networks[J].,2010,(01):155.
[2]孙丽艳.基于激励机制的认知无线电自私行为研究[J].计算机技术与发展,2009,(10):170.
 SUN Li-yan.Study of Cognitive Radio' Selfish Behavior Based on Two- Stage Incentives Mechanism[J].,2009,(01):170.
[3]郭云玮 刘全 高俊.不同衰落信道下的协作感知性能研究[J].计算机技术与发展,2011,(05):13.
 GUO Yun-wei,LIU Quan,GAO Jun.Performance of Cooperative Spectrum Sensing over Different Fading Channels[J].,2011,(01):13.
[4]任长城 马雏.智能家居中基于认知无线电的通信协议设计[J].计算机技术与发展,2011,(08):14.
 REN Chang-cheng,MA Chu.A Design of Cognitive Radio Communication Protocol in Smart Home[J].,2011,(01):14.
[5]汪晓睿 刘全.认知无线电网络中频谱感知安全的研究进展[J].计算机技术与发展,2011,(12):155.
 WANG Xiao-rui,LIU Quan.A Survey on Spectrum Sensing Security Issues in Cognitive Radio Networks[J].,2011,(01):155.
[6]宗平 刘柳 乔秀泉[].认知无线电技术在ZigBee中的应用研究[J].计算机技术与发展,2012,(08):241.
 ZONG Ping,LIU Liu,QIAO Xiu-quan.Application Research of Cognitive Radio Technology in ZigBee[J].,2012,(01):241.
[7]王韦刚 胡海峰.基于压缩感知的协作频谱检测[J].计算机技术与发展,2012,(12):241.
 WANG Wei-gang,HU Hai-feng.Collaborative Spectrum Detection Based on Compressed Sensing[J].,2012,(01):241.
[8]刘洋,季薇,侯晓赟.一种改进的基于 OMP 重建的宽带频谱感知算法[J].计算机技术与发展,2013,(01):99.
 LIU Yang,JI Wei,HOU Xiao-yun.A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on OMP[J].,2013,(01):99.
[9]赵之旭,田峰.一种改进的认知无线电功率控制博弈算法[J].计算机技术与发展,2013,(02):101.
 ZHAO Zhi-xu,TIAN Feng.An Improved Power Control Game Algorithm in Cognitive Radios[J].,2013,(01):101.
[10]孔小丽,周井泉.基于用户需求的改进型频谱资源分配算法[J].计算机技术与发展,2013,(03):73.
 KONG Xiao-li,ZHOU Jing-quan.Advanced Spectrum Resource Allocation Algorithm Based on User Requirement[J].,2013,(01):73.

更新日期/Last Update: 2023-01-10