相似文献/References:
[1]许肖,顾磊. 复杂背景下文本检测研究[J].计算机技术与发展,2015,25(03):40.
XU Xiao,GU Lei. Research on Text Detection under Complex Background[J].,2015,25(01):40.
[2]蒋志鹏,潘坤榕,张国林,等.基于置信度融合的自然场景文本检测方法[J].计算机技术与发展,2021,31(08):39.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 007]
JIANG Zhi-peng,PAN Kun-rong,ZHANG Guo-lin,et al.Research on Scene Text Detection Based on Confidence Fusion[J].,2021,31(01):39.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 007]
[3]彭祥云,陈 黎.安防视频时间戳同步检测方法研究[J].计算机技术与发展,2021,31(11):195.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 032]
PENG Xiang-yun,CHEN Li.Research on Synchronous Detection Method of Security Video Time Stamp[J].,2021,31(01):195.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 032]
[4]赵晓芹.融合局部特征与全局特征的场景文本检测算法[J].计算机技术与发展,2022,32(S2):25.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 004]
ZHAO Xiao-qin.Scene Text Detection Algorithm Combining Local and Global Features[J].,2022,32(01):25.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 004]
[5]丁 泽,程艳云.面向自然街景改进的文本检测[J].计算机技术与发展,2023,33(04):82.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 012]
DING Ze,CHENG Yan-yun.Improved Text Detection for Natural Streetscape[J].,2023,33(01):82.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 012]
[6]关 慧,宗福焱,曲 盼.基于 BTM 和长文本语义增强的用户评论分类 …[J].计算机技术与发展,2023,33(07):181.[doi:10. 3969 / j. issn. 1673-629X. 2023. 07. 027]
GUAN Hui,ZONG Fu-yan,QU Pan.User Comment Classification Based on BTM and Long Text Semantic Enhancement[J].,2023,33(01):181.[doi:10. 3969 / j. issn. 1673-629X. 2023. 07. 027]
[7]张庭瑞,方承志,徐国钦,等.基于多分支特征融合的自然场景文本检测算法[J].计算机技术与发展,2024,34(02):142.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 021]
ZHANG Ting-rui,FANG Cheng-zhi,XU Guo-qin,et al.Natural Scene Text Detection Algorithm Based on Multi-branch Feature Fusion[J].,2024,34(01):142.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 021]