[1]韩昕昊,孙进保,李 威.基于 Gabor 的多尺度纹理特征融合的黑烟识别[J].计算机技术与发展,2022,32(S2):41-46.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 007]
 HAN Xin-hao,SUN Jin-bao,LI Wei.Black Smoke Recognition Based on Gabor Multi-scale Texture Feature Fusion[J].,2022,32(S2):41-46.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 007]
点击复制

基于 Gabor 的多尺度纹理特征融合的黑烟识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年S2期
页码:
41-46
栏目:
人工智能
出版日期:
2022-12-11

文章信息/Info

Title:
Black Smoke Recognition Based on Gabor Multi-scale Texture Feature Fusion
文章编号:
1673-629X(2022)S2-0041-06
作者:
韩昕昊1 孙进保2 李 威1
1. 沈阳工业大学 信息科学与工程学院,辽宁 沈阳 110870;
2. 东软集团股份有限公司,辽宁 沈阳 110179
Author(s):
HAN Xin-hao1 SUN Jin-bao2 LI Wei1
1. School of Information Science and Engineering,Shenyang University of Technology,Shenyang 110870,China;
2. Neusoft Group Co. , Ltd,Shenyang 110179,China
关键词:
黑烟车特征融合局部二值模式Gabor 滤波器纹理特征
Keywords:
smoky vehiclesfeature fusionlocal binary patternGabor filteringtexture feature
分类号:
TP391. 4
DOI:
10. 3969 / j. issn. 1673-629X. 2022. S2. 007
摘要:
柴油车是道路上的高污染车辆的典型代表,利用计算机视觉实现黑烟车的有效识别具有成本低和应用范围广等优点。 但车辆排放的黑烟是半透明状的团雾,对路面、光线等环境的变化敏感,使得黑烟识别的误检率与错误率较高。 为解决以上问题,提出一种基于 Gabor 的多尺度纹理特征融合的黑烟识别方法。 首先采用 Gabor 变换提取多尺度、多方向黑烟纹理信息,过滤掉无关的干扰信息;然后利用二值模式 PLBP( Pyramid Local Binary Pattern,PLBP) 提取黑烟图像局部纹理特征。 融合两种异构特征得到 PLBP-Gabor 纹理特征提取算法。 对广西某高速路段内 62 段视频和 2 个图像数据集进行训练及测试,实验结果表明该纹理特征提取算法可以在保持低误报率的前提下提高黑烟车的检测率。
Abstract:
Diesel vehicle is a typical representative of high pollution vehicles on the road. Using computer vision to realize the effective identification of smoky vehicles has the advantages of low cost and wide application range. However,the black smoke emitted by vehiclesis a translucent mass fog,which is sensitive to the changes of road surface,light and other environment,so that the false detection rate anderror rate of black smoke recognition are high. In order to solve the problems,a black smoke recognition method based on Gabor multi-scale texture feature fusion is proposed. Firstly,Gabor transform is used to extract multi-scale and multi-directional black smoke textureinformation and filter out irrelevant interference information. Then the PLBP ( Pyramid Local Binary Pattern) is used extracts the localtexture features of image,PLBP-Gabor texture feature extraction algorithm is obtained by fusing the two features. 62 videos and 2 imagedatasets in a high-speed section in Guangxi are used. The experimental results show that the texture feature extraction algorithm canimprove the detection rate of smoky vehicle on the premise of maintaining low false positive rate.

相似文献/References:

[1]周伟 武港山.基于显著图的花卉图像分类算法研究[J].计算机技术与发展,2011,(11):15.
 ZHOU Wei,WU Gang-shan.Research on Saliency Map Based Flower Image Classification Algorithm[J].,2011,(S2):15.
[2]黎粤华,单磊,田仲富,等. 基于多特征融合的视频烟雾检测[J].计算机技术与发展,2016,26(01):129.
 LI Yue-hua,SHAN Lei,TIAN Zhong-fu,et al. Video Smoke Detection Based on Multi Feature Fusion Technology[J].,2016,26(S2):129.
[3]刘加运,李玉惠,李勃,等. 一种多维特征融合的车辆对象同一性匹配方法[J].计算机技术与发展,2016,26(04):167.
 LIU Jia-yun,LI Yu-hui,LI Bo,et al. A Vehicle Object Identity Matching Method of Multidimensional Feature Combination[J].,2016,26(S2):167.
[4]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(S2):19.
[5]张雅倩,曾卫明,石玉虎.基于特征融合与稀疏表示的人耳识别[J].计算机技术与发展,2017,27(12):7.
 ZHANG Ya-qian,ZENG Wei-min,SHI Yu-hu.Ear Recognition Based on Feature Fusion and Sparse Representation[J].,2017,27(S2):7.
[6]谭程午,夏利民,王 嘉.基于融合特征的群体行为识别[J].计算机技术与发展,2018,28(01):17.[doi:10.3969/ j. issn.1673-629X.2018.01.004]
 TAN Cheng-wu,XIA Li-min,WANG Jia.Recognition of Human Group Action Based on Fusion Features[J].,2018,28(S2):17.[doi:10.3969/ j. issn.1673-629X.2018.01.004]
[7]王 敏,陈立潮,曹建芳,等.Hadoop 下自适应随机权值多特征融合图像分类[J].计算机技术与发展,2018,28(11):30.[doi:10.3969/ j. issn.1673-629X.2018.11.007]
 WANG Min,CHEN Li-chao,CAO Jian-fang,et al.Multi-feature Fusion Image Classification of Adaptive Random Weight Based on Hadoop[J].,2018,28(S2):30.[doi:10.3969/ j. issn.1673-629X.2018.11.007]
[8]韩欣欣,叶奇玲.基于 SIFT 和 HOG 特征融合的人体行为识别方法[J].计算机技术与发展,2019,29(06):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 015]
 HAN Xin-xin,YE Qi-ling.Human Action Recognition Based on Feature Fusion of SIFT and HOG[J].,2019,29(S2):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 015]
[9]宋相法,吕 明.融合三维骨架和深度图像特征的人体行为识别[J].计算机技术与发展,2019,29(07):55.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 011]
 SONG Xiang-fa,LYU Ming.Human Activity Recognition Based on Fusing 3D Skeleton and Depth Image Feature[J].,2019,29(S2):55.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 011]
[10]王泽泓,刘厚泉.基于迁移学习与自适应特征融合的建筑物识别[J].计算机技术与发展,2019,29(12):40.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 007]
 WANG Ze-hong,LIU Hou-quan.Building Recognition Based on Transfer Learning and Adaptive Feature Fusion[J].,2019,29(S2):40.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 007]

更新日期/Last Update: 2022-10-10