相似文献/References:
[1]彭昀磊,牛 耘.基于弱监督的蛋白质交互识别[J].计算机技术与发展,2018,28(02):19.[doi:10.3969/j.issn.1673-629X.2018.02.005]
PENG Yunlei,NIU Yun.Protein-protein Interaction Identification Based on Weak Supervision[J].,2018,28(12):19.[doi:10.3969/j.issn.1673-629X.2018.02.005]
[2]毛宇薇,牛耘.基于关键词的蛋白质交互关系识别[J].计算机技术与发展,2019,29(03):18.[doi:10.3969/ j. issn.1673-629X.2019.03.004]
MAO Yu-wei,NIU Yun.Protein-protein Interaction Identification Based on Keywords[J].,2019,29(12):18.[doi:10.3969/ j. issn.1673-629X.2019.03.004]
[3]张振宇,朱培栋,赵东升.一种用于病案相似性度量的弱监督学习算法[J].计算机技术与发展,2019,29(09):1.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 001]
ZHANG Zhen-yu,ZHU Pei-dong,ZHAO Dong-sheng.A Weakly Supervised Machine Learning Algorithm Applied to Similarity Measure of Medical Records[J].,2019,29(12):1.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 001]
[4]白瑜颖,刘宁钟,姜晓通.结合注意力混合裁剪的细粒度分类网络[J].计算机技术与发展,2021,31(10):38.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 007]
BAI Yu-ying,LIU Ning-zhong,JIANG Xiao-tong.Fine Grained Image Classification Network Combined with Attention CutMix[J].,2021,31(12):38.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 007]
[5]范业嘉,孙 涵.基于轻量级深度哈希网络的细粒度图像检索[J].计算机技术与发展,2021,31(10):128.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 022]
FAN Ye-jia,SUN Han.Fine-grained Image Retrieval Based on Lightweight Deep Hash Network[J].,2021,31(12):128.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 022]
[6]赵晓芹.融合局部特征与全局特征的场景文本检测算法[J].计算机技术与发展,2022,32(S2):25.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 004]
ZHAO Xiao-qin.Scene Text Detection Algorithm Combining Local and Global Features[J].,2022,32(12):25.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 004]
[7]殷梓轩,孙 涵.基于注意力金字塔与监督哈希的细粒度图像检索[J].计算机技术与发展,2023,33(03):20.[doi:10. 3969 / j. issn. 1673-629X. 2023. 03. 004]
YIN Zi-xuan,SUN Han.Fine-grained Image Retrieval Based on Supervised Hashing with Attention Pyramid[J].,2023,33(12):20.[doi:10. 3969 / j. issn. 1673-629X. 2023. 03. 004]