[1]廖黄炜,马 燕*,黄 慧.基于多特征融合卷积神经网络的年龄预测[J].计算机技术与发展,2022,32(10):58-64.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 010]
 LIAO Huang-wei,MA Yan*,HUANG Hui.Age Prediction Based on ulti-feature Fusion ConvolutionalNeural Network[J].,2022,32(10):58-64.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 010]
点击复制

基于多特征融合卷积神经网络的年龄预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年10期
页码:
58-64
栏目:
媒体计算
出版日期:
2022-10-10

文章信息/Info

Title:
Age Prediction Based on ulti-feature Fusion ConvolutionalNeural Network
文章编号:
1673-629X(2022)10-0058-07
作者:
廖黄炜马 燕* 黄 慧
上海师范大学 信息与机电工程学院,上海 200234
Author(s):
LIAO Huang-weiMA Yan* HUANG Hui
School of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200234,China
关键词:
特征融合年龄预测卷积神经网络深度学习小波变换Gabor
Keywords:
feature fusionage predictionconvolution neural networkdeep learningwavelet transformGabor
分类号:
TP753
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 10. 010
摘要:
使用卷积神经网络预测人脸图像年龄。 目前, 标注的表观年龄公开数据集不足且人数规模小, 小样本训练紧凑模型成为年龄预测的研究方向之一。 为提高卷积神经网络对图像中年龄特征提取能力和小样本数据迁移能力,并减少对大型图像分类数据集的依赖,提出多特征融合卷积神经网络结构的年龄预测方法。 该方法设计多特征融合模块融合两者特征向量获取图像的多层次信息;主干特征提取卷积网络中引入注意力机制模块,增强年龄特征提取能力;设计序列化年龄标签的组合损失函数,使得年龄特征充分拟合年龄标签。 在 IMDB-WIKI 预训练下,该方法在 MORPH 上取得的平均误差为 1. 951,ChaLearn15 上平均误差为 3. 128。 实验结果表明,该方法的训练和迁移成本低,与许多最新方法相比取得了较高的预测精度。
Abstract:
Convolutional neural network is used to predict the age of face images. At present,the publicly labeled apparent age dataset is insufficient. Small sample training compact model has become one of the research directions of age prediction. In order to improve theability of convolutional neural network to extract age features in images and the ability of small sample data migration,and reduce the dependence? on large image classification datasets,a multi - feature fusion convolutional neural network structure age prediction method isproposed. This method designs a multi-feature fusion module to fuse the feature vectors of the two to obtain the multi-level information of the image. The main feature extraction convolutional network introduces the attention mechanism module to enhance the ability of age feature extraction. A combined loss function of serialized age labels is designed to make age features fully fitting the age label. Under the pre-training of IMDB - WIKI, the average error obtained by the proposed method on MORPH is 1. 951, and the average error on ChaLearn15 is 3. 128. The experimental results show that the training and migration cost of the proposed method is low, which has achieved higher prediction accuracy compared with many state-of-the-art methods.

相似文献/References:

[1]周伟 武港山.基于显著图的花卉图像分类算法研究[J].计算机技术与发展,2011,(11):15.
 ZHOU Wei,WU Gang-shan.Research on Saliency Map Based Flower Image Classification Algorithm[J].,2011,(10):15.
[2]黎粤华,单磊,田仲富,等. 基于多特征融合的视频烟雾检测[J].计算机技术与发展,2016,26(01):129.
 LI Yue-hua,SHAN Lei,TIAN Zhong-fu,et al. Video Smoke Detection Based on Multi Feature Fusion Technology[J].,2016,26(10):129.
[3]刘加运,李玉惠,李勃,等. 一种多维特征融合的车辆对象同一性匹配方法[J].计算机技术与发展,2016,26(04):167.
 LIU Jia-yun,LI Yu-hui,LI Bo,et al. A Vehicle Object Identity Matching Method of Multidimensional Feature Combination[J].,2016,26(10):167.
[4]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(10):19.
[5]张雅倩,曾卫明,石玉虎.基于特征融合与稀疏表示的人耳识别[J].计算机技术与发展,2017,27(12):7.
 ZHANG Ya-qian,ZENG Wei-min,SHI Yu-hu.Ear Recognition Based on Feature Fusion and Sparse Representation[J].,2017,27(10):7.
[6]谭程午,夏利民,王 嘉.基于融合特征的群体行为识别[J].计算机技术与发展,2018,28(01):17.[doi:10.3969/ j. issn.1673-629X.2018.01.004]
 TAN Cheng-wu,XIA Li-min,WANG Jia.Recognition of Human Group Action Based on Fusion Features[J].,2018,28(10):17.[doi:10.3969/ j. issn.1673-629X.2018.01.004]
[7]王 敏,陈立潮,曹建芳,等.Hadoop 下自适应随机权值多特征融合图像分类[J].计算机技术与发展,2018,28(11):30.[doi:10.3969/ j. issn.1673-629X.2018.11.007]
 WANG Min,CHEN Li-chao,CAO Jian-fang,et al.Multi-feature Fusion Image Classification of Adaptive Random Weight Based on Hadoop[J].,2018,28(10):30.[doi:10.3969/ j. issn.1673-629X.2018.11.007]
[8]韩欣欣,叶奇玲.基于 SIFT 和 HOG 特征融合的人体行为识别方法[J].计算机技术与发展,2019,29(06):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 015]
 HAN Xin-xin,YE Qi-ling.Human Action Recognition Based on Feature Fusion of SIFT and HOG[J].,2019,29(10):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 015]
[9]宋相法,吕 明.融合三维骨架和深度图像特征的人体行为识别[J].计算机技术与发展,2019,29(07):55.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 011]
 SONG Xiang-fa,LYU Ming.Human Activity Recognition Based on Fusing 3D Skeleton and Depth Image Feature[J].,2019,29(10):55.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 011]
[10]王泽泓,刘厚泉.基于迁移学习与自适应特征融合的建筑物识别[J].计算机技术与发展,2019,29(12):40.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 007]
 WANG Ze-hong,LIU Hou-quan.Building Recognition Based on Transfer Learning and Adaptive Feature Fusion[J].,2019,29(10):40.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 007]

更新日期/Last Update: 2022-10-10