[1]吴长旺,黄 刚,胡婷婷.融合注意力机制的 GNN 推荐算法[J].计算机技术与发展,2022,32(10):7-13.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 002]
 WU Chang-wang,HUANG Gang,HU Ting-ting.GNN Recommendation Algorithm Fused with Attention Mechanism[J].,2022,32(10):7-13.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 002]
点击复制

融合注意力机制的 GNN 推荐算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年10期
页码:
7-13
栏目:
大数据与云计算
出版日期:
2022-10-10

文章信息/Info

Title:
GNN Recommendation Algorithm Fused with Attention Mechanism
文章编号:
1673-629X(2022)10-0007-07
作者:
吴长旺黄 刚胡婷婷
南京邮电大学 计算机学院、软件学院、网络空间安全学院,江苏 南京 210023
Author(s):
WU Chang-wangHUANG GangHU Ting-ting
School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
关键词:
图神经网络注意力机制门控循环单元社交信息推荐系统
Keywords:
graph neural networkattention mechanismgated recurrent unitsocial informationrecommended system
分类号:
TP309
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 10. 002
摘要:
在推荐系统中,用户的兴趣爱好受到自身的历史行为、社交网络等多方面影响,呈现出一种动态变化的趋势。 而如何在推荐系统中结合用户的社交网络信息以及时序兴趣提取有效信息,是一个棘手的问题。对此,提出了一种融合多头注意力机制和门控循环单元的图神经网络算法 MGRU。 该算法先利用门控循环单元对时序信息进行记忆与遗忘,从而增强局部图邻域迭代过程中时序信息的抽象能力。 再利用注意力记忆网络获得朋友在不同方面对用户的影响,依靠多头注意力机制来调节朋友的影响力大小。 通过门控神经网络将朋友的影响和用户自身偏好进行融合,对项目进行推荐。 在Ciao 与 Epionions 数据集上使用均方根误差和平均绝对误差作为评价指标进行实验,结果证明该算法提升了推荐系统的准确率。
Abstract:
In the recommendation system,the user’s interests and hobbies are affected by their own historical behavior,social networks and other aspects,showing a trend of dynamic changes. How to extract effective information from the user爷 s social network information and time series interests in the recommendation system is a difficulty. Therefore, a graph neural network algorithm MGRU, which combines multi-head attention mechanism and gated recurrent unit, is proposed. Firstly the gated loop unit is used to memorize and forget the time series information,there by enhancing the abstraction ability of the time series information in the iterative process of the local graph neighborhood. Then the attention memory network is applied to obtain the influence of friends on users in different aspects and adjust the influence of friends according to the multi-head attention mechanism. Through the gated neural network,the influence off riends and the user爷 s own preferences are integrated to recommend items. Experiments on the Ciao and Epionions datasets are carriedout with the root mean square error and the average absolute error as evaluation indicators. It is proved that the proposed algorithm improves the accuracy of the recommendation system.

相似文献/References:

[1]李梦洁,董峦.基于 PyTorch 的机器翻译算法的实现[J].计算机技术与发展,2018,28(10):160.[doi:10.3969/ j. issn.1673-629X.2018.10.033]
 LI Meng-jie,DONG Luan.Implementation of Machine Translation Algorithm Based on PyTorch[J].,2018,28(10):160.[doi:10.3969/ j. issn.1673-629X.2018.10.033]
[2]李东欣,禹 龙,田生伟,等.注意力机制的 LSTM-DBN 维语人称代词指代消解[J].计算机技术与发展,2019,29(07):33.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 007]
 LI Dong-xin,YU Long,TIAN Sheng-wei,et al.Attention Mechanism of LSTM-DBN Uyghur Personal Pronoun Anaphora Resolution[J].,2019,29(10):33.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 007]
[3]尹 鹏,周 林,郭 强,等.基于短语级注意力机制的关系抽取方法[J].计算机技术与发展,2019,29(09):24.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 005]
 YIN Peng,ZHOU Lin,GUO Qiang,et al.Relation Extraction Based on Phrase-level Attention[J].,2019,29(10):24.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 005]
[4]钟 诚,周浩杰,韦海亮.一种基于注意力机制的三维点云物体识别方法[J].计算机技术与发展,2020,30(04):41.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 008]
 ZHONG Cheng,ZHOU Hao-jie,WEI Hai-liang.A 3D Point Cloud Object Recognition Method Based on Attention Mechanism[J].,2020,30(10):41.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 008]
[5]王乾铭,李 吟.基于深度学习的个性化聊天机器人研究[J].计算机技术与发展,2020,30(04):79.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 015]
 WANG Qian-ming,LI Yin.Research on Personalized Chatbot Based on Deep Learning[J].,2020,30(10):79.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 015]
[6]朱立倩.基于深度学习的数显仪表字符识别[J].计算机技术与发展,2020,30(06):141.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 027]
 ZHU Li-qian.Character Recognition of Digital Display Instrument Based on Deep Learning[J].,2020,30(10):141.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 027]
[7]申静波,李井辉,孙丽娜.注意力机制在评论文本情感分析中的应用研究[J].计算机技术与发展,2020,30(07):169.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 036]
 SHEN Jing-bo,LI Jing-hui,SUN Li-na.Research on Application of Attention Mechanism in Comment Text Emotional Analysis[J].,2020,30(10):169.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 036]
[8]张亚飞.基于注意力的权重分配机制[J].计算机技术与发展,2020,30(09):49.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 009]
 ZHANG Ya-fei.Attention-based Weight Allocation Mechanism[J].,2020,30(10):49.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 009]
[9]王振业,叶成绪*,王文韬,等.基于 LSTM-Att 方法的音乐流行趋势预测[J].计算机技术与发展,2020,30(09):188.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 034]
 WANG Zhen-ye,YE Cheng-xu*,WANG Wen-tao,et al.Music Trend Forecast Based on LSTM-Att Method[J].,2020,30(10):188.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 034]
[10]陈 琛,刘小云,方玉华.融合注意力机制的电子病历命名实体识别[J].计算机技术与发展,2020,30(10):216.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 038]
 CHEN Chen,LIU Xiao-yun,FANG Yu-hua.Named Entity Recognition in Electronic Medical Record Introducing Attention Mechanisms[J].,2020,30(10):216.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 038]
[11]仇亚进,奚雪峰 *,崔志明,等.多跳式机器阅读理解研究进展综述[J].计算机技术与发展,2023,33(02):9.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 002]
 QIU Ya-jin,XI Xue-feng *,CUI Zhi-ming,et al.Review on Research Progress of Multi-hop Machine Reading Comprehension[J].,2023,33(10):9.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 002]
[12]高 贵,赵 阳,于舒娟,等.基于 GNN 的文本分类算法研究[J].计算机技术与发展,2023,33(05):138.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 021]
 GAO Gui,ZHAO Yang,YU Shu-juan,et al.Research on Text Classification Algorithm Based on GNN[J].,2023,33(10):138.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 021]
[13]张 攀,来风刚,周 逸,等.基于多通道注意力图卷积网络的微服务分解[J].计算机技术与发展,2023,33(08):66.[doi:10. 3969 / j. issn. 1673-629X. 2023. 08. 010]
 ZHANG Pan,LAI Feng-gang,ZHOU Yi,et al.Multi-channel Attentional Graph Convolutional Networks for Microservice Extraction[J].,2023,33(10):66.[doi:10. 3969 / j. issn. 1673-629X. 2023. 08. 010]

更新日期/Last Update: 2022-10-10