[1]孙安亮,时宏伟,王金策.基于字符与单词嵌入的航空安全命名实体识别[J].计算机技术与发展,2022,32(09):148-153.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 023]
 SUN An-liang,SHI Hong-wei,WANG Jin-ce.Named Entity Recognition Based on Character and Word Embedding in Aviation Safety[J].,2022,32(09):148-153.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 023]
点击复制

基于字符与单词嵌入的航空安全命名实体识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年09期
页码:
148-153
栏目:
新型计算应用系统
出版日期:
2022-09-10

文章信息/Info

Title:
Named Entity Recognition Based on Character and Word Embedding in Aviation Safety
文章编号:
1673-629X(2022)09-0148-06
作者:
孙安亮时宏伟王金策
四川大学 计算机学院,四川 成都 610000
Author(s):
SUN An-liangSHI Hong-weiWANG Jin-ce
School of Computer,Sichuan University,Chengdu 610000,China
关键词:
命名实体识别双向长短期记忆网络卷积神经网络条件随机场航空安全
Keywords:
named entity recognition bidirectional long short - term memory convolutional neural network conditional random fieldaviation safety
分类号:
TP391. 4
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 09. 023
摘要:
航空安全命名实体识别是构建航空安全知识图谱中基础且关键的任务,对消除航空隐患,制定有效的纠正措施和宏观政策提供了重要依据。 针对航空安全领域包含大量较长的专有名词和名词缩写混合等问题,采用双向长短期记忆模型(BILSTM) 、卷积神经网络( CNN) 和条件随机场( CRF) ,构建一种使用字符与词两个粒度的模型,对航空安全事故进行命名实体识别( NER),以提取事故中的实体。 采用航空事故报道为实验数据集,利用 BILSTM 模型自动学习字符粒度的语义特征向量,再结合词粒度的特征向量,通过 CNN 全局特征,最后通过 CRF 层对提取到的特征进行序列标注,以提取命名实体。 经过实验对比验证,该模型能够有效提取命名实体,F1 值相对现有方法提升了 2. 22% 。 实验结果表明,增加字符粒度的嵌入并且使用 CNN 获取全局特征可以有效提高航空安全领域命名实体识别效果。
Abstract:
The identification of aviation safety nomenclature is a basic and critical task in the construction of aviation safety knowledge map,which provides an important basis for eliminating aviation hidden dangers and formulating effective corrective measures and macro policies. Aimed at locally sensitive problems such as the mixture of a large number of long proper nouns and noun abbreviations,we use bidirectional long - term short - term memory model ( BILSTM) , convolutional neural network ( CNN) and conditional random field( CRF) to construct a model that uses two granularities of characters and words to perform named entity recognition ( NER) for aviation safety accidents to extract the entity in the accident. The aviation accident report is used as the experimental data set,and the BILSTM model is used to learn the semantic feature vector of the character granularity. Combined with the feature vector of the word gran ularity,the global feature is obtained through CNN,and finally the extracted features are sequenced through the CRF layer to extract the name entity. After experimental comparison and verification,the model can effectively extract named entities and the F1 value is increased by 2. 22% compared with the existing methods. Experimental results show that increasing the embedding of character granularity and using CNN to obtain global features can effectively improve the effect of named entity recognition in the aviation safety field.

相似文献/References:

[1]陈 琛,刘小云,方玉华.融合注意力机制的电子病历命名实体识别[J].计算机技术与发展,2020,30(10):216.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 038]
 CHEN Chen,LIU Xiao-yun,FANG Yu-hua.Named Entity Recognition in Electronic Medical Record Introducing Attention Mechanisms[J].,2020,30(09):216.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 038]
[2]周 康,曲卫东,杨艺琛.基于增强 BiLSTM 的网络文章核心实体识别[J].计算机技术与发展,2021,31(01):7.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 002]
 ZHOU Kang,QU Wei-dong,YANG Yi-chen.Core Entity Recognition of Web Articles Based on Enhanced BiLSTM[J].,2021,31(09):7.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 002]
[3]何阳宇,易晓宇,唐 亮,等.基于BLSTM-ATT的老挝语军事领域实体关系抽取[J].计算机技术与发展,2021,31(05):31.[doi:10. 3969 / j. issn. 1673-629X. 2021. 05. 006]
 ,,et al.LaoEntityRelationExtractioninMilitaryDomainBasedonBLSTM andAttentionMechanism[J].,2021,31(09):31.[doi:10. 3969 / j. issn. 1673-629X. 2021. 05. 006]
[4]王 俊,王修来*,栾伟先,等.基于 BERT 模型的科研人才领域命名实体识别[J].计算机技术与发展,2021,31(11):21.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 004]
 WANG Jun,WANG Xiu-lai*,LUAN Wei-xian,et al.Research on Named Entity Recognition of Scientific Research Talents Field Based on BERT Model[J].,2021,31(09):21.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 004]
[5]潘理虎,赵彭彭,龚大立,等.煤矿事故案例命名实体识别方法研究[J].计算机技术与发展,2022,32(02):154.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 025]
 PAN Li-hu,ZHAO Peng-peng,GONG Da-li,et al.Combined ALBERT for Named Entity Recognition in Coal Mine Accident Cases[J].,2022,32(09):154.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 025]
[6]刘华玲,孙 毅.基于实体识别和信息融合的知识图谱研究[J].计算机技术与发展,2022,32(09):107.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 017]
 LIU Hua-ling,SUN Yi.Knowledge Graph Based on Entity Recognition and Information Fusion--A Case Study of COVID-19[J].,2022,32(09):107.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 017]
[7]杜睿山,陈思路,刘文豪.基于岩石文本信息的命名实体识别[J].计算机技术与发展,2022,32(09):188.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 029]
 DU Rui-shan,CHEN Si-lu,LIU Wen-hao.Named Entity Recognition Based on Rock Text Information[J].,2022,32(09):188.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 029]
[8]罗 峦,夏骄雄.融合 ERNIE 与改进 Transformer 的中文 NER 模型[J].计算机技术与发展,2022,32(10):120.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 020]
 LUO Luan,XIA Jiao-xiong.Research on Chinese Named Entity Recognition Combining ERNIE with Improved Transformer[J].,2022,32(09):120.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 020]
[9]赵建强,朱万彤,陈 诚.基于多重卷积神经网络模型的命名实体识别[J].计算机技术与发展,2023,33(01):187.[doi:10. 3969 / j. issn. 1673-629X. 2023. 01. 028]
 ZHAO Jian-qiang,ZHU Wan-tong,CHEN Cheng.Named Entity Recognition Based on Duplex Convolution Neural Network Model[J].,2023,33(09):187.[doi:10. 3969 / j. issn. 1673-629X. 2023. 01. 028]
[10]李春生,田梦晴,张可佳.基于 Bi-LSTM 网络的管道异常数据检测方法[J].计算机技术与发展,2023,33(06):215.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 032]
 LI Chun-sheng,TIAN Meng-qing,ZHANG Ke-jia.Pipeline Anomaly Data Detection Method Based on CNN and Bi-LSTM Network[J].,2023,33(09):215.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 032]
[11]王卫红,吕红燕,曹玉辉,等.基于 BERT 的混合神经网络实体识别方法[J].计算机技术与发展,2021,31(08):100.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 017]
 WANG Wei-hong,LYU Hong-yan,CAO Yu-hui,et al.A Hybrid Neural Network Entity Recognition Method Based on BERT Model[J].,2021,31(09):100.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 017]
[12]胡慧婷,李建平,董振荣,等.基于 BERT 模型的教育技术学领域实体抽取[J].计算机技术与发展,2022,32(10):164.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 027]
 HU Hui-ting,LI Jian-ping,DONG Zhen-rong,et al.Named Entity Recognition Method in Educational Technology Field Based on BERT[J].,2022,32(09):164.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 027]

更新日期/Last Update: 2022-09-10