[1]黎洁仪,梁之彦,范绍佳,等.线上降雨灾情检测系统设计与应用[J].计算机技术与发展,2022,32(08):191-196.[doi:10. 3969 / j. issn. 1673-629X. 2022. 08. 031]
 LI Jie-yi,LIANG Zhi-yan,FAN Shao-jia,et al.Design and Application of Online Rainfall Disaster Detection System[J].,2022,32(08):191-196.[doi:10. 3969 / j. issn. 1673-629X. 2022. 08. 031]
点击复制

线上降雨灾情检测系统设计与应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年08期
页码:
191-196
栏目:
应用前沿与综合
出版日期:
2022-08-10

文章信息/Info

Title:
Design and Application of Online Rainfall Disaster Detection System
文章编号:
1673-629X(2022)08-0191-06
作者:
黎洁仪12梁之彦23范绍佳24梁家鸿1
1. 广州市突发事件预警信息发布中心,广东 广州 511430;
2. 广东省环珠江口气候环境与空气质量变化野外科学观测研究站,广东 广州 510275;
3. 广州市气象台,广东 广州 511430;
4. 中山大学 大气科学学院,广东 广州 510275
Author(s):
LI Jie-yi12LIANG Zhi-yan23FAN Shao-jia24LIANG Jia-hong1
1. Guangzhou Emergency Early Warning Release Center,Guangzhou 511430,China;
2. Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary,Guangzhou 510275,China;
3. Guangzhou Meteorological Observatory,Guangzhou 511430,China;
4. School of Atmospheric Science,Sun Yat-sen University,Guangzhou 510275,China
关键词:
数据挖掘机器学习灾情提取文本分类社交媒体
Keywords:
data miningmachine learningdisaster information extractiontext categorizationsocial media
分类号:
TP319
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 08. 031
摘要:
结合社会媒体大数据获取城市降雨灾情数据和开展灾害风险评估是一种新的可行途径。 但互联网数据量大,有效处理数据是工作中的难点。 为此,提出利用社交媒体数据,并基于降雨专业词汇、广州地区语言特色、支持向量机算法以构建降雨灾情文档分类模型。 同时根据数据采集与预处理、降雨灾情文档分类模型、灾情权重分级和热点分析的流程设计了广州线上降雨灾情检测系统。 该系统采用 B/ S 架构,利用 WEB 与 GIS 技术,实现了灾情应用管理、风险告警、数据分类、数据过滤、数据采集的功能。 实际运行效果表明,系统利用机器学习算法解决了大量数据处理效率低下的问题,同时通过灾情热点分析结合利用气象雷达、自动站观测数据进一步提高灾情提取的准确度,以自动检测和评估降雨雨情、灾情的状态是可行的,在灾情收集业务应用上具有一定的参考价值。
Abstract:
Combining social media with big data to obtain rainfall disaster data and carry out disaster risk assessment is a new feasibleway. However,the Internet has a large amount of data,and it is difficult to deal with data effectively. Based on the social media data,professional vocabulary,Cantonese and support vector machine algorithm,rainfall disaster text categorization model is established. Guangzhou online rainfall disaster detection system is designed based on the processes of data collection and preprocessing,rainfall disaster textcategorization model,disaster weight classification and hot spot analysis.The system uses B/S architecture,WEB and GIS technology torealize the functions of disaster application management,risk alarm,data classifi-cation, data filtering,and data acquisition. The actual operation result shows that the system uses machine learning algorithm to solve the problem of low efficiency of a large number of data processing,and it is feasible to further improve the accuracy of disaster extraction by analyzing the hot spot of disaster and using the observation data of meteorological radar and automatic station,so as to automatically detect and evaluate the state of rainfall and disaster. It has a certain reference value in the application of disaster collection business.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(08):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(08):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(08):235.
[4]陈全 赵文辉 李洁 江雨燕.选择性集成学习算法的研究[J].计算机技术与发展,2010,(02):87.
 CHEN Quan,ZHAO Wen-hui,LI Jie,et al.Research of Selective Ensemble Learning Algorithm[J].,2010,(08):87.
[5]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(08):114.
[6]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(08):229.
[7]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(08):93.
[8]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(08):105.
[9]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(08):84.
[10]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(08):109.
[11]于 澍,曹 琦,刘 涛.基于随机森林的微博互动特征分析[J].计算机技术与发展,2019,29(10):51.[doi:10. 3969 / j. issn. 1673-629X. 2019. 10. 011]
 YU Shu,CAO Qi,LIU Tao.Analysis of Interactive Characteristics of Weibo Based on Random Forest[J].,2019,29(08):51.[doi:10. 3969 / j. issn. 1673-629X. 2019. 10. 011]
[12]张家艳,郑建立,郑西川,等.MIMIC 数据库智能挖掘研究概述[J].计算机技术与发展,2020,30(01):144.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 026]
 ZHANG Jia-yan,ZHENG Jian-li,ZHENG Xi-chuan,et al.Application of Artificial Intelligence Technology in MIMIC Database Mining[J].,2020,30(08):144.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 026]
[13]李春生,曹 琦,于 澍.针对小规模数据集的多模型融合算法研究[J].计算机技术与发展,2020,30(02):63.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 013]
 LI Chun-sheng,CAO Qi,YU Shu.Research on Multi-model Fusion Algorithm for Small Scale Data Sets[J].,2020,30(08):63.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 013]
[14]陈 赛,刘文杰,黄国耀,等.高维序列数据降维方法在证券市场的应用研究[J].计算机技术与发展,2023,33(04):190.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 028]
 CHEN Sai,LIU Wen-jie,HUANG Guo-yao,et al.Research on Application of Dimension Reduction Method of High Dimensional Sequence Data in Securities Market[J].,2023,33(08):190.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 028]

更新日期/Last Update: 2022-08-10