[1]高新成,杜功鑫,王莉利,等.深度学习在地震初至拾取中的应用综述[J].计算机技术与发展,2022,32(08):1-6.[doi:10. 3969 / j. issn. 1673-629X. 2022. 08. 001]
 GAO Xin-cheng,DU Gong-xin,WANG Li-li,et al.Application of Deep Learning in Earthquake First Break Picking[J].,2022,32(08):1-6.[doi:10. 3969 / j. issn. 1673-629X. 2022. 08. 001]
点击复制

深度学习在地震初至拾取中的应用综述()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年08期
页码:
1-6
栏目:
综述
出版日期:
2022-08-10

文章信息/Info

Title:
Application of Deep Learning in Earthquake First Break Picking
文章编号:
1673-629X(2022)08-0001-06
作者:
高新成1 杜功鑫2 王莉利2 李 强2 柯 璇3
1. 东北石油大学 现代教育技术中心,黑龙江 大庆 163318;
2. 东北石油大学 计算机与信息技术学院,黑龙江 大庆 163318;
3. 东北石油大学 地球科学学院,黑龙江 大庆 163318
Author(s):
GAO Xin-cheng1 DU Gong-xin2 WANG Li-li2 LI Qiang2 KE Xuan3
1. Modern Education Technology Center,Northeast Petroleum University,Daqing 163318,China;
2. School of Computer & Information Technology,Northeast Petroleum University,Daqing 163318, China;
3. School of Earth Science,Northeast Petroleum University,Daqing 163318,China
关键词:
人工智能深度学习地震勘探初至拾取神经网络
Keywords:
artificial intelligencedeep learningseismic explorationfirst arrival pickingneural network
分类号:
TP183;P163. 4
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 08. 001
摘要:
随着计算机硬件技术的不断提高,人工智能技术在各个行业的广泛应用,地震学界开始探索用深度学习算法处理地震初至波数据,为初至波的拾取研究提供了崭新的方向。 为了解决传统地震波初至拾取方法对低信噪比资料拾取精度较低、算法鲁棒性较差等缺点,提高地震初至拾取速度和效率,减少耗费的人力以及人为拾取所产生的误差,该文系统地介绍了地震事件初至波拾取的常用传统方法,详细地阐述了深度学习领域内各种经典神经网络模型在地震初至波拾取中应用现状。 通过实例对比分析卷积神经网络、深度信念网络、生成对抗神经网络和深度递归神经网络等模型在地震初至波拾取中的应用效果,讨论总结了深度学习在地震初至波拾取领域内应用存在问题和应用前景,为今后地震初至拾取研究提供新的思路。
Abstract:
With the continuous improvement of computer hardware technology and the wide application of artificial intelligencetechnology in various industries,the seismological community began to explore the application of depth learning algorithm to processseismic first break data,which provides a new direction for the research of first break picking. In order to solve the shortcomings oftraditional seismic first break picking methods,such as low picking accuracy of low signal-to-noise ratio data and poor robustness of thealgorithm,improve the speed and efficiency of seismic first break picking,and reduce the labor consumption and human error,we systematically introduce the common traditional methods of seismic event first break pickup and expound in detail the application status ofvarious classical neural network models in the field of depth learning in seismic first break pickup. By examples,we compare and analyzethe application effects of convolution neural network,depth belief network,generating antagonistic neural network and depth recursiveneural network in seismic first break pickup. The existing problems and application prospects of depth learning in the field of seismic firstbreak pickup are discussed and summarized,which provides a new idea for the research of seismic first break pickup in the future.

相似文献/References:

[1]张春飞 李万龙 郑山红.Agent技术在智能教学系统中的应用与研究[J].计算机技术与发展,2009,(05):30.
 ZHANG Chun-fei,LI Wan-long,ZHENG Shan-hong.Application and Research of Agent Technology in Intelligent Tutoring System[J].,2009,(08):30.
[2]黄长专 王彪 杨忠.图像分割方法研究[J].计算机技术与发展,2009,(06):76.
 HUANG Chang-zhuan,WANG Biao,YANG Zhong.A Study on Image Segmentation Techniques[J].,2009,(08):76.
[3]张春飞 郑山红 李万龙.基于Agent技术的医疗信息整合研究[J].计算机技术与发展,2009,(10):250.
 ZHANG Chun-fei,ZHENG Shan-hong,LI Wan-long.Research on Integration of Healthcare Enterprise Based on Agent Technology[J].,2009,(08):250.
[4]杜秀全 程家兴.博弈算法在黑白棋中的应用[J].计算机技术与发展,2007,(01):216.
 DU Xiu-quan,CHENG Jia-xing.Game- Playing Algorithm in Black and White Chess Application[J].,2007,(08):216.
[5]孙锦 冯勤超.创造力支持系统[J].计算机技术与发展,2007,(03):138.
 SUN Jin,FENG Qin-chao.Creativity Support System[J].,2007,(08):138.
[6]吉张媛 何华灿.模糊Prolog系统[J].计算机技术与发展,2006,(02):123.
 JI Zhang-yuan,HE Hua-can.Fuzzy Prolog System[J].,2006,(08):123.
[7]丁莹.研究人工智能的一条新途径[J].计算机技术与发展,2012,(03):133.
 DING Ying.A New Avenue of Researching on AI[J].,2012,(08):133.
[8]张代远[].一类新型改进的广义蚁群优化算法[J].计算机技术与发展,2012,(06):39.
 ZHANG Dai-yuan.A New Improved Generalized Ant Colony Optimization Algorithm[J].,2012,(08):39.
[9]于尚超 李阳 王鹏.基于拼凑替换的定理机器证明的研究与实现[J].计算机技术与发展,2012,(06):135.
 YU Shang-chao,LI Yang,WANG Peng.Research and Realization of Theorem Proving Based on Combination and Replace[J].,2012,(08):135.
[10]朱志慧 李雷 种冬梅.改进的BT—SVM应用于电力系统SSA[J].计算机技术与发展,2012,(09):157.
 ZHU Zhi-hui,LI Lei,CHONG Dong-mei.Improved Binary Tree Support Vector Machine and Its Application to Power System Static Security Assessment[J].,2012,(08):157.
[11]曲之琳,胡晓飞.基于改进激活函数的卷积神经网络研究[J].计算机技术与发展,2017,27(12):77.[doi:10.3969/ j. issn.1673-629X.2017.12.017]
 QU Zhi-lin,HU Xiao-fei.Research on Convolutional Neural Network Based on Improved Activation Function[J].,2017,27(08):77.[doi:10.3969/ j. issn.1673-629X.2017.12.017]
[12]李 睿,张世杰,黄奥云,等.基于深度学习的青少年手腕骨骨龄评价[J].计算机技术与发展,2020,30(01):124.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 022]
 LI Rui,ZHANG Shi-jie,HUANG Ao-yun,et al.Bone Age Assessment of Hand Bone for Adolescents Based on Deep Learning[J].,2020,30(08):124.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 022]
[13]张家艳,郑建立,郑西川,等.MIMIC 数据库智能挖掘研究概述[J].计算机技术与发展,2020,30(01):144.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 026]
 ZHANG Jia-yan,ZHENG Jian-li,ZHENG Xi-chuan,et al.Application of Artificial Intelligence Technology in MIMIC Database Mining[J].,2020,30(08):144.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 026]
[14]张明淘,韩 普.医疗实体识别研究进展[J].计算机技术与发展,2020,30(04):57.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 011]
 ZHANG Ming-tao,HAN Pu.Research Progress on Medical Entity Recognition[J].,2020,30(08):57.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 011]
[15]于海浩,韩中元,孔蕾蕾,等.计算机艺术的创造性[J].计算机技术与发展,2020,30(09):100.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 018]
 YU Hai-hao,HAN Zhong-yuan,KONG Lei-lei,et al.Creativity of Computer Art[J].,2020,30(08):100.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 018]
[16]程换新,郭占广,程 力,等.基于胶囊神经网络的车型精细识别研究[J].计算机技术与发展,2021,31(03):89.[doi:10. 3969 / j. issn. 1673-629X. 2021. 03. 015]
 CHENG Huan-xin,GUO Zhan-guang,CHENG Li,et al.Research on Fine Identification of Vehicle Type Based on Capsule Neural Network[J].,2021,31(08):89.[doi:10. 3969 / j. issn. 1673-629X. 2021. 03. 015]
[17]张 冬,谢世朋*.配网不停电作业全流程安全监测与预警系统[J].计算机技术与发展,2022,32(05):176.[doi:10. 3969 / j. issn. 1673-629X. 2022. 05. 030]
 ZHANG Dong,XIE Shi-peng*.Safety Monitoring and Early Warning System for Whole Process of Live Working[J].,2022,32(08):176.[doi:10. 3969 / j. issn. 1673-629X. 2022. 05. 030]
[18]朱万鹏,雷秀娟.使用胸片检测新型冠状肺炎的深度集成网络[J].计算机技术与发展,2023,33(02):153.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 023]
 ZHU Wan-peng,LEI Xiu-juan.Deep Integrated Network for Detection of COVID-19 Using Chest Radiographs[J].,2023,33(08):153.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 023]
[19]宋 杰,刘彩霞,李慧婷.基于 U-Net 网络的医学图像分割研究综述[J].计算机技术与发展,2024,34(01):9.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 002]
 SONG Jie,LIU Cai-xia,LI Hui-ting.Review of Medical Image Segmentation Based on U-Net Network[J].,2024,34(08):9.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 002]
[20]李 郸,梁洲源,马慧宇,等.机器视觉在卷烟生产中的应用与展望[J].计算机技术与发展,2024,34(01):213.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 031]
 LI Dan,LIANG Zhou-yuan,MA Hui-yu,et al.Application and Prospect of Machine Vision in Cigarette Production[J].,2024,34(08):213.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 031]

更新日期/Last Update: 2022-08-10