[1]林 峰,向 忠.基于深度学习的印花织物循环图案基元分割[J].计算机技术与发展,2022,32(05):160-164.[doi:10. 3969 / j. issn. 1673-629X. 2022. 05. 027]
 LIN Feng,XIANG Zhong.Primitive Segmentation of Repeat Patterns on Printed Fabrics Based on Deep Learning[J].,2022,32(05):160-164.[doi:10. 3969 / j. issn. 1673-629X. 2022. 05. 027]
点击复制

基于深度学习的印花织物循环图案基元分割()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年05期
页码:
160-164
栏目:
应用前沿与综合
出版日期:
2022-05-10

文章信息/Info

Title:
Primitive Segmentation of Repeat Patterns on Printed Fabrics Based on Deep Learning
文章编号:
1673-629X(2022)05-0160-05
作者:
林 峰向 忠
浙江理工大学 机械与自动控制学院,浙江 杭州 310018
Author(s):
LIN FengXIANG Zhong
Faculty of Mechanical Engineering & Automation,Zhejiang Sci-Tech University,Hangzhou 310018,China
关键词:
深度学习AlexNet循环图案基元卷积神经网络印花织物
Keywords:
deep learningAlexNetrepeat pattern primitivesconvolutional neural networkprinted fabrics
分类号:
TP391. 4
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 05. 027
摘要:
在实际的生产过程中,织物的印花图案往往由循环图案基元排列而成。 然而基于传统的人工织物循环图案基元分割会消耗大量设计成本,因此实现基元的自动分割,有非常重要的研究意义。 近年来,随着深度学习技术的快速发展,为解决该问题带来新的希望。 针对印花织物循环图案基元分割,该文提出了一种基于深度学习的循环图案基元分割算法。 该算法利用预训练 AlexNet 网络的卷积层进行特征提取,织物图像输入网络后,在网络特征层中会产生规律的激活峰值,每对峰值对应一组位移向量。 并且对位移向量进行投票,出现次数最多位移向量的绝对值即为循环图案基元的尺寸。随后在印花织物中找到对应区域,从而实现完整循环图案基元的分割。 对比传统算法,该算法不仅可以分割出简单印花织物的循环图案基元,还可以分割复杂印花织物的循环图案基元,达到了更高的准确率,具有更强的鲁棒性。
Abstract:
In the actual production process,the printed patterns of the fabric are often arranged by the repeat pattern primitives. However,the primitive segmentation based on the traditional artificial fabric loop pattern consumes a lot of design costs,so the realization of the automatic segmentation of primitives has very important research significance. In recent years,with the rapid development of deep learning technology,it has brought new hopes for solving this problem. Aiming at the segmentation of repeat pattern primitives on printed fabrics,we propose a repeat pattern primitive segmentation algorithm based on deep learning. The algorithm uses the convolutional layer of the pre-trained AlexNet network for feature extraction. After the fabric image is input to the network, regular activation peaks will be generated in the network feature layer,and each pair of peaks corresponds to a set of displacement vectors. And the displacement vector is voted,and the absolute value of the displacement vector that appears the most times is the size of the repeat pattern primitive. Then the corresponding area in the printed fabric is found,so as to realize the segmentation of the complete repeat pattern primitives. Compared with the traditional algorithm,the proposed algorithm can not only segment the repeat pattern primitives of simple printed fabrics,but also segment the repeat pattern primitives of complex printed fabrics,achieving higher accuracy and stronger robustness.

相似文献/References:

[1]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(05):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[2]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[3]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(05):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[4]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(05):19.
[5]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(05):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[6]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(05):1.
[7]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(05):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[8]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(05):1.
[9]李全兵,文 钊*,田艳梅*,等.基于 WGAN 的音频关键词识别研究[J].计算机技术与发展,2021,31(08):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
 LI Quan-bing,WEN Zhao *,TIAN Yan-mei *,et al.Research on Audio Keywords Recognition Based on WassersteinGenerative Adversarial Network[J].,2021,31(05):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
[10]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(05):7.

更新日期/Last Update: 2022-05-10